These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 34966547)

  • 1. A nonlinear multi-scale model for blood circulation in a realistic vascular system.
    Qohar UNA; Zanna Munthe-Kaas A; Nordbotten JM; Hanson EA
    R Soc Open Sci; 2021 Dec; 8(12):201949. PubMed ID: 34966547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transmural coupling of fluid flow in microcirculatory network and interstitium in tumors.
    Baish JW; Netti PA; Jain RK
    Microvasc Res; 1997 Mar; 53(2):128-41. PubMed ID: 9143544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Origin of the inertial deviation from Darcy's law: An investigation from a microscopic flow analysis on two-dimensional model structures.
    Agnaou M; Lasseux D; Ahmadi A
    Phys Rev E; 2017 Oct; 96(4-1):043105. PubMed ID: 29347623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new framework for assessing subject-specific whole brain circulation and perfusion using MRI-based measurements and a multi-scale continuous flow model.
    Hodneland E; Hanson E; Sævareid O; Nævdal G; Lundervold A; Šoltészová V; Munthe-Kaas AZ; Deistung A; Reichenbach JR; Nordbotten JM
    PLoS Comput Biol; 2019 Jun; 15(6):e1007073. PubMed ID: 31237876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling of the contrast-enhanced perfusion test in liver based on the multi-compartment flow in porous media.
    Rohan E; Lukeš V; Jonášová A
    J Math Biol; 2018 Aug; 77(2):421-454. PubMed ID: 29368273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling a 3-D multiscale blood-flow and heat-transfer framework for realistic vascular systems.
    Amare R; Hodneland E; Roberts JA; Bahadori AA; Eckels S
    Sci Rep; 2022 Aug; 12(1):14610. PubMed ID: 36028657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A model of fluid flow in solid tumors.
    Pozrikidis C; Farrow DA
    Ann Biomed Eng; 2003 Feb; 31(2):181-94. PubMed ID: 12627826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tailoring porous media for controllable capillary flow.
    Liu M; Suo S; Wu J; Gan Y; Ah Hanaor D; Chen CQ
    J Colloid Interface Sci; 2019 Mar; 539():379-387. PubMed ID: 30594833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fractal model for blood flow in cardiovascular system.
    Jayalalitha G; Shanthoshini Deviha V; Uthayakumar R
    Comput Biol Med; 2008 Jun; 38(6):684-93. PubMed ID: 18471808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A computationally efficient framework for the simulation of cardiac perfusion using a multi-compartment Darcy porous-media flow model.
    Michler C; Cookson AN; Chabiniok R; Hyde E; Lee J; Sinclair M; Sochi T; Goyal A; Vigueras G; Nordsletten DA; Smith NP
    Int J Numer Method Biomed Eng; 2013 Feb; 29(2):217-32. PubMed ID: 23345266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-scale models of the lung airways and vascular system.
    Tawhai MH; Burrowes KS
    Adv Exp Med Biol; 2008; 605():190-4. PubMed ID: 18085270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Darcy's law of yield stress fluids on a treelike network.
    Schimmenti VM; Lanza F; Hansen A; Franz S; Rosso A; Talon L; De Luca A
    Phys Rev E; 2023 Aug; 108(2):L023102. PubMed ID: 37723767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical simulation of the vascular structure dependence of blood flow in the kidney.
    Deng W; Tsubota KI
    Med Eng Phys; 2022 Jun; 104():103809. PubMed ID: 35641074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vascular graph model to simulate the cerebral blood flow in realistic vascular networks.
    Reichold J; Stampanoni M; Lena Keller A; Buck A; Jenny P; Weber B
    J Cereb Blood Flow Metab; 2009 Aug; 29(8):1429-43. PubMed ID: 19436317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The breakdown of Darcy's law in a soft porous material.
    Rosti ME; Pramanik S; Brandt L; Mitra D
    Soft Matter; 2020 Jan; 16(4):939-944. PubMed ID: 31845717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct Numerical Simulation of Cellular-Scale Blood Flow in 3D Microvascular Networks.
    Balogh P; Bagchi P
    Biophys J; 2017 Dec; 113(12):2815-2826. PubMed ID: 29262374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical simulation of blood and interstitial flow through a solid tumor.
    Pozrikidis C
    J Math Biol; 2010 Jan; 60(1):75-94. PubMed ID: 19277663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A nonlinear fluid model for pulmonary blood circulation.
    Li CW; Cheng HD
    J Biomech; 1993 Jun; 26(6):653-64. PubMed ID: 8514811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parameterisation of multi-scale continuum perfusion models from discrete vascular networks.
    Hyde ER; Michler C; Lee J; Cookson AN; Chabiniok R; Nordsletten DA; Smith NP
    Med Biol Eng Comput; 2013 May; 51(5):557-70. PubMed ID: 23345008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. THE ROLE OF POROUS MEDIA IN MODELING FLUID FLOW WITHIN HOLLOW FIBER MEMBRANES OF THE TOTAL ARTIFICIAL LUNG.
    Khanafer K; Cook K; Marafie A
    J Porous Media; 2012; 15(2):113-122. PubMed ID: 23471191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.