These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 34967029)

  • 1. The flagellar germ-line hypothesis: How flagellate and ciliate gametes significantly shaped the evolution of organismal complexity.
    Lindemann CB
    Bioessays; 2022 Mar; 44(3):e2100143. PubMed ID: 34967029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of retrograde intraflagellar transport in flagellar assembly, maintenance, and function.
    Engel BD; Ishikawa H; Wemmer KA; Geimer S; Wakabayashi K; Hirono M; Craige B; Pazour GJ; Witman GB; Kamiya R; Marshall WF
    J Cell Biol; 2012 Oct; 199(1):151-67. PubMed ID: 23027906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intraflagellar transport (IFT) during assembly and disassembly of Chlamydomonas flagella.
    Dentler W
    J Cell Biol; 2005 Aug; 170(4):649-59. PubMed ID: 16103230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intraflagellar transport and the flagellar tip complex.
    Sloboda RD
    J Cell Biochem; 2005 Feb; 94(2):266-72. PubMed ID: 15558569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intraflagellar transport and functional analysis of genes required for flagellum formation in trypanosomes.
    Absalon S; Blisnick T; Kohl L; Toutirais G; Doré G; Julkowska D; Tavenet A; Bastin P
    Mol Biol Cell; 2008 Mar; 19(3):929-44. PubMed ID: 18094047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intraflagellar transport particle size scales inversely with flagellar length: revisiting the balance-point length control model.
    Engel BD; Ludington WB; Marshall WF
    J Cell Biol; 2009 Oct; 187(1):81-9. PubMed ID: 19805630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intraflagellar transport is required for the maintenance of the trypanosome flagellum composition but not its length.
    Fort C; Bonnefoy S; Kohl L; Bastin P
    J Cell Sci; 2016 Aug; 129(15):3026-41. PubMed ID: 27343245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intraflagellar transport (IFT) cargo: IFT transports flagellar precursors to the tip and turnover products to the cell body.
    Qin H; Diener DR; Geimer S; Cole DG; Rosenbaum JL
    J Cell Biol; 2004 Jan; 164(2):255-66. PubMed ID: 14718520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Actin is required for IFT regulation in Chlamydomonas reinhardtii.
    Avasthi P; Onishi M; Karpiak J; Yamamoto R; Mackinder L; Jonikas MC; Sale WS; Shoichet B; Pringle JR; Marshall WF
    Curr Biol; 2014 Sep; 24(17):2025-32. PubMed ID: 25155506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the role of IFT particle complex A and B in flagellar entry and exit of IFT-dynein in Chlamydomonas.
    Williamson SM; Silva DA; Richey E; Qin H
    Protoplasma; 2012 Jul; 249(3):851-6. PubMed ID: 21853389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. IFT57 stabilizes the assembled intraflagellar transport complex and mediates transport of motility-related flagellar cargo.
    Jiang X; Hernandez D; Hernandez C; Ding Z; Nan B; Aufderheide K; Qin H
    J Cell Sci; 2017 Mar; 130(5):879-891. PubMed ID: 28104816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intraflagellar transport is required in Drosophila to differentiate sensory cilia but not sperm.
    Han YG; Kwok BH; Kernan MJ
    Curr Biol; 2003 Sep; 13(19):1679-86. PubMed ID: 14521833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Directed movements of ciliary and flagellar membrane components: a review.
    Bloodgood RA
    Biol Cell; 1992; 76(3):291-301. PubMed ID: 1305476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A microtubule depolymerizing kinesin functions during both flagellar disassembly and flagellar assembly in Chlamydomonas.
    Piao T; Luo M; Wang L; Guo Y; Li D; Li P; Snell WJ; Pan J
    Proc Natl Acad Sci U S A; 2009 Mar; 106(12):4713-8. PubMed ID: 19264963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel microtubule-depolymerizing kinesin involved in length control of a eukaryotic flagellum.
    Blaineau C; Tessier M; Dubessay P; Tasse L; Crobu L; Pagès M; Bastien P
    Curr Biol; 2007 May; 17(9):778-82. PubMed ID: 17433682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intraflagellar transport balances continuous turnover of outer doublet microtubules: implications for flagellar length control.
    Marshall WF; Rosenbaum JL
    J Cell Biol; 2001 Oct; 155(3):405-14. PubMed ID: 11684707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct regulation of two flagella by calcium during chemotaxis of male gametes in the brown alga Mutimo cylindricus (Cutleriaceae, Tilopteridales).
    Kinoshita-Terauchi N; Shiba K; Umezawa T; Inaba K
    J Phycol; 2024 Apr; 60(2):409-417. PubMed ID: 38159028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein arginine methyltransferases interact with intraflagellar transport particles and change location during flagellar growth and resorption.
    Mizuno K; Sloboda RD
    Mol Biol Cell; 2017 May; 28(9):1208-1222. PubMed ID: 28298486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Together, the IFT81 and IFT74 N-termini form the main module for intraflagellar transport of tubulin.
    Kubo T; Brown JM; Bellve K; Craige B; Craft JM; Fogarty K; Lechtreck KF; Witman GB
    J Cell Sci; 2016 May; 129(10):2106-19. PubMed ID: 27068536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The eukaryotic flagellum makes the day: novel and unforeseen roles uncovered after post-genomics and proteomics data.
    Diniz MC; Pacheco AC; Farias KM; de Oliveira DM
    Curr Protein Pept Sci; 2012 Sep; 13(6):524-46. PubMed ID: 22708495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.