BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 34967152)

  • 1. Plasmonic Optoelectronic Memristor Enabling Fully Light-Modulated Synaptic Plasticity for Neuromorphic Vision.
    Shan X; Zhao C; Wang X; Wang Z; Fu S; Lin Y; Zeng T; Zhao X; Xu H; Zhang X; Liu Y
    Adv Sci (Weinh); 2022 Feb; 9(6):e2104632. PubMed ID: 34967152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optoelectronic bio-synaptic plasticity on neotype kesterite memristor with switching ratio >104.
    Yang F; Wei W; Dong X; Zhao Y; Chen J; Chen J; Zhang X; Li Y
    J Chem Phys; 2023 Sep; 159(11):. PubMed ID: 37712793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neotype kuramite optoelectronic memristor for bio-synaptic plasticity simulations.
    Dong X; Wei W; Sun H; Li S; Chen J; Chen J; Zhang X; Zhao Y; Li Y
    J Chem Phys; 2023 May; 158(18):. PubMed ID: 37154283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-Rectifying All-Optical Modulated Optoelectronic Multistates Memristor Crossbar Array for Neuromorphic Computing.
    Lu C; Meng J; Song J; Wang T; Zhu H; Sun QQ; Zhang DW; Chen L
    Nano Lett; 2024 Feb; 24(5):1667-1672. PubMed ID: 38241735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversible optical switching memristors with tunable STDP synaptic plasticity: a route to hierarchical control in artificial intelligent systems.
    Jaafar AH; Gray RJ; Verrelli E; O'Neill M; Kelly SM; Kemp NT
    Nanoscale; 2017 Nov; 9(43):17091-17098. PubMed ID: 29086790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Versatile Cu2ZnSnS4-based synaptic memristor for multi-field-regulated neuromorphic applications.
    Dong X; Sun H; Li S; Zhang X; Chen J; Zhang X; Zhao Y; Li Y
    J Chem Phys; 2024 Apr; 160(15):. PubMed ID: 38619459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bipolar Analog Memristors as Artificial Synapses for Neuromorphic Computing.
    Wang R; Shi T; Zhang X; Wang W; Wei J; Lu J; Zhao X; Wu Z; Cao R; Long S; Liu Q; Liu M
    Materials (Basel); 2018 Oct; 11(11):. PubMed ID: 30373122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light-Induced Conductance Potentiation and Depression in an All-Optically Controlled Memristor.
    Li X; Fang Z; Guo X; Wang R; Zhao Y; Zhu W; Wang L; Zhang L
    ACS Appl Mater Interfaces; 2024 May; 16(21):27866-27874. PubMed ID: 38747412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CMOS-Compatible Memristor for Optoelectronic Neuromorphic Computing.
    Wu F; Chou CH; Tseng TY
    Nanoscale Res Lett; 2022 Nov; 17(1):105. PubMed ID: 36342556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Artificial Visual Synaptic Architecture with High-Linearity Light-Modulated Weight for Optoelectronic Neuromorphic Computing.
    Liu Y; Wang B; Wu L; Huang L; Lin L; Xiang L; Liu D; Zhang S; Zhu C; Tao Y; Li D; Pan A
    ACS Appl Mater Interfaces; 2023 Oct; ():. PubMed ID: 37885218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscale memristor device as synapse in neuromorphic systems.
    Jo SH; Chang T; Ebong I; Bhadviya BB; Mazumder P; Lu W
    Nano Lett; 2010 Apr; 10(4):1297-301. PubMed ID: 20192230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. STDP and STDP variations with memristors for spiking neuromorphic learning systems.
    Serrano-Gotarredona T; Masquelier T; Prodromakis T; Indiveri G; Linares-Barranco B
    Front Neurosci; 2013; 7():2. PubMed ID: 23423540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implementation of a spike-based perceptron learning rule using TiO2-x memristors.
    Mostafa H; Khiat A; Serb A; Mayr CG; Indiveri G; Prodromakis T
    Front Neurosci; 2015; 9():357. PubMed ID: 26483629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tailoring Classical Conditioning Behavior in TiO
    Wang W; Wang Y; Yin F; Niu H; Shin YK; Li Y; Kim ES; Kim NY
    Nanomicro Lett; 2024 Feb; 16(1):133. PubMed ID: 38411720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Truly Concomitant and Independently Expressed Short- and Long-Term Plasticity in a Bi
    Zhang Z; Li T; Wu Y; Jia Y; Tan C; Xu X; Wang G; Lv J; Zhang W; He Y; Pei J; Ma C; Li G; Xu H; Shi L; Peng H; Li H
    Adv Mater; 2019 Jan; 31(3):e1805769. PubMed ID: 30461090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrafast and Low-Power 2D Bi
    Dong Z; Hua Q; Xi J; Shi Y; Huang T; Dai X; Niu J; Wang B; Wang ZL; Hu W
    Nano Lett; 2023 May; 23(9):3842-3850. PubMed ID: 37093653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Boost of the Bio-memristor Performance for Artificial Electronic Synapses by Surface Reconstruction.
    Wang J; Shi C; Sushko ML; Lan J; Sun K; Zhao J; Liu X; Yan X
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39641-39651. PubMed ID: 34374517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. All-Optically Controlled Artificial Synapses Based on Light-Induced Adsorption and Desorption for Neuromorphic Vision.
    Liang J; Yu X; Qiu J; Wang M; Cheng C; Huang B; Zhang H; Chen R; Pei W; Chen H
    ACS Appl Mater Interfaces; 2023 Feb; ():. PubMed ID: 36752383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implementation of Highly Stable Memristive Characteristics in an Organic-Inorganic Hybrid Resistive Switching Layer of Chitosan-Titanium Oxide with Microwave-Assisted Oxidation.
    Lee DH; Park H; Cho WJ
    Molecules; 2023 Jul; 28(13):. PubMed ID: 37446836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pulse Shape and Timing Dependence on the Spike-Timing Dependent Plasticity Response of Ion-Conducting Memristors as Synapses.
    Campbell KA; Drake KT; Barney Smith EH
    Front Bioeng Biotechnol; 2016; 4():97. PubMed ID: 28083531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.