These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 34967611)
1. dsRNAs Targeted to the Brown Planthopper Dang C; Zhang Y; Sun C; Li R; Wang F; Fang Q; Yao H; Stanley D; Ye G J Agric Food Chem; 2022 Jan; 70(1):373-380. PubMed ID: 34967611 [TBL] [Abstract][Full Text] [Related]
2. Risk assessment of insecticides used in rice on miridbug, Cyrtorhinus lividipennis Reuter, the important predator of brown planthopper, Nilaparvata lugens (Stal.). Preetha G; Stanley J; Suresh S; Samiyappan R Chemosphere; 2010 Jul; 80(5):498-503. PubMed ID: 20537680 [TBL] [Abstract][Full Text] [Related]
3. Knockdown of midgut genes by dsRNA-transgenic plant-mediated RNA interference in the hemipteran insect Nilaparvata lugens. Zha W; Peng X; Chen R; Du B; Zhu L; He G PLoS One; 2011; 6(5):e20504. PubMed ID: 21655219 [TBL] [Abstract][Full Text] [Related]
4. Spraying double-stranded RNA targets UDP-N-acetylglucosamine pyrophosphorylase in the control of Nilaparvata lugens. Lyu Z; Chen J; Lyu J; Guo P; Liu J; Liu J; Zhang W Int J Biol Macromol; 2024 Jun; 271(Pt 2):132455. PubMed ID: 38795878 [TBL] [Abstract][Full Text] [Related]
5. Early season natural control of the brown planthopper, Nilaparvata lugens: the contribution and interaction of two spider species and a predatory bug. Sigsgaard L Bull Entomol Res; 2007 Oct; 97(5):533-44. PubMed ID: 17916271 [TBL] [Abstract][Full Text] [Related]
6. Nanoparticle-delivered RNAi-based pesticide target screening for the rice pest white-backed planthopper and risk assessment for a natural predator. Ma YF; Zhao YQ; Zhou YY; Feng HY; Gong LL; Zhang MQ; Hull JJ; Dewer Y; Roy A; Smagghe G; He M; He P Sci Total Environ; 2024 May; 926():171286. PubMed ID: 38428617 [TBL] [Abstract][Full Text] [Related]
7. Bt rice expressing Cry2Aa does not harm Cyrtorhinus lividipennis, a main predator of the nontarget herbivore Nilapavarta lugens. Han Y; Meng J; Chen J; Cai W; Wang Y; Zhao J; He Y; Feng Y; Hua H PLoS One; 2014; 9(11):e112315. PubMed ID: 25375147 [TBL] [Abstract][Full Text] [Related]
8. Threonyl-tRNA synthetase gene, a potential target for RNAi-based control of three rice planthoppers. Li HJ; Zhang HH; Lu JB; Zhang CX Pest Manag Sci; 2022 Nov; 78(11):4589-4598. PubMed ID: 35831262 [TBL] [Abstract][Full Text] [Related]
9. Genome-wide screening for components of small interfering RNA (siRNA) and micro-RNA (miRNA) pathways in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). Xu HJ; Chen T; Ma XF; Xue J; Pan PL; Zhang XC; Cheng JA; Zhang CX Insect Mol Biol; 2013 Dec; 22(6):635-47. PubMed ID: 23937246 [TBL] [Abstract][Full Text] [Related]
10. RNA interference in Nilaparvata lugens (Homoptera: Delphacidae) based on dsRNA ingestion. Li J; Chen Q; Lin Y; Jiang T; Wu G; Hua H Pest Manag Sci; 2011 Jul; 67(7):852-9. PubMed ID: 21370391 [TBL] [Abstract][Full Text] [Related]
11. The Phosphoserine Phosphatase Alters the Free Amino Acid Compositions and Fecundity in Ahmad S; Zhang J; Wang H; Zhu H; Dong Q; Zong S; Wang T; Chen Y; Ge L Int J Mol Sci; 2022 Dec; 23(23):. PubMed ID: 36499611 [TBL] [Abstract][Full Text] [Related]
12. Identification of key amino acid differences between Cyrtorhinus lividipennis and Nilaparvata lugens nAChR α8 subunits contributing to neonicotinoid sensitivity. Guo B; Zhang Y; Meng X; Bao H; Fang J; Liu Z Neurosci Lett; 2015 Mar; 589():163-8. PubMed ID: 25613467 [TBL] [Abstract][Full Text] [Related]
14. Selection of nectar plants for use in ecological engineering to promote biological control of rice pests by the predatory bug, Cyrtorhinus lividipennis, (Heteroptera: Miridae). Zhu P; Lu Z; Heong K; Chen G; Zheng X; Xu H; Yang Y; Nicol HI; Gurr GM PLoS One; 2014; 9(9):e108669. PubMed ID: 25254377 [TBL] [Abstract][Full Text] [Related]
15. Chromosome-level genome assembly of the mirid predator Cyrtorhinus lividipennis Reuter (Hemiptera: Miridae), an important natural enemy in the rice ecosystem. Bai Y; Shi Z; Zhou W; Wang G; Shi X; He K; Li F; Zhu ZR Mol Ecol Resour; 2022 Apr; 22(3):1086-1099. PubMed ID: 34581510 [TBL] [Abstract][Full Text] [Related]
16. Predatory Capacity and Reproduction of Zhong Y; Liao X; Hou M Insects; 2023 Feb; 14(3):. PubMed ID: 36975911 [TBL] [Abstract][Full Text] [Related]
17. The tiered-evaluation of the effects of transgenic cry1c rice on Cyrtorhinus lividipennis, a main predator of Nilaparvata lugens. Han Y; Ma F; Nawaz M; Wang Y; Cai W; Zhao J; He Y; Hua H; Zou Y Sci Rep; 2017 Feb; 7():42572. PubMed ID: 28205641 [TBL] [Abstract][Full Text] [Related]
18. Molecular basis for insecticide-enhanced thermotolerance in the brown planthopper Nilaparvata lugens Stål (Hemiptera:Delphacidae). Ge LQ; Huang LJ; Yang GQ; Song QS; Stanley D; Gurr GM; Wu JC Mol Ecol; 2013 Nov; 22(22):5624-34. PubMed ID: 24303791 [TBL] [Abstract][Full Text] [Related]
19. The insect ecdysone receptor is a good potential target for RNAi-based pest control. Yu R; Xu X; Liang Y; Tian H; Pan Z; Jin S; Wang N; Zhang W Int J Biol Sci; 2014; 10(10):1171-80. PubMed ID: 25516715 [TBL] [Abstract][Full Text] [Related]
20. RNAi-mediated silencing of ferritin genes in the brown planthopper Nilaparvata lugens affects survival, growth and female fecundity. Shen Y; Chen YZ; Zhang CX Pest Manag Sci; 2021 Jan; 77(1):365-377. PubMed ID: 32741141 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]