These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Physics of Fluid Transport in Hybrid Biporous Capillary Wicking Microstructures. Ravi S; Dharmarajan R; Moghaddam S Langmuir; 2016 Aug; 32(33):8289-97. PubMed ID: 27458050 [TBL] [Abstract][Full Text] [Related]
4. Prediction and Characterization of Dry-out Heat Flux in Micropillar Wick Structures. Zhu Y; Antao DS; Lu Z; Somasundaram S; Zhang T; Wang EN Langmuir; 2016 Feb; 32(7):1920-7. PubMed ID: 26808963 [TBL] [Abstract][Full Text] [Related]
5. Local Meniscus Curvature During Steady-State Evaporation from Micropillar Arrays. Fleming E; Tsuchiya K; Banerjee D; Zhu G ACS Appl Mater Interfaces; 2020 Sep; 12(38):43266-43272. PubMed ID: 32866369 [TBL] [Abstract][Full Text] [Related]
6. Current Trends in Wick Structure Construction in Loop Heat Pipes Applications: A Review. Szymanski P; Mikielewicz D; Fooladpanjeh S Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013901 [TBL] [Abstract][Full Text] [Related]
7. Electro-osmosis Aided Thin-Film Evaporation from a Micropillar Wick Structure. Pujahari A; DasGupta S; Bhattacharya A Langmuir; 2022 Jul; 38(27):8442-8455. PubMed ID: 35771505 [TBL] [Abstract][Full Text] [Related]
8. Unified Modeling Framework for Thin-Film Evaporation from Micropillar Arrays Capturing Local Interfacial Effects. Wang R; Jakhar K; Antao DS Langmuir; 2019 Oct; 35(40):12927-12935. PubMed ID: 31525296 [TBL] [Abstract][Full Text] [Related]
9. Remarkable Thermal Performance Enhancement of Micro Heat Pipes with Graphene-Nanoplatelet Nano-Wicks. Gan JS; Hung YM Nanomaterials (Basel); 2023 Jan; 13(2):. PubMed ID: 36677986 [TBL] [Abstract][Full Text] [Related]
10. Measurement of Capillary Radius and Contact Angle within Porous Media. Ravi S; Dharmarajan R; Moghaddam S Langmuir; 2015 Dec; 31(47):12954-9. PubMed ID: 26538412 [TBL] [Abstract][Full Text] [Related]
11. An Experimental Study of a Composite Wick Structure for Ultra-Thin Flattened Heat Pipes. Zhou W; Yang Y; He J; Chen R; Jian Y; Shao D; Wu A Micromachines (Basel); 2024 Jun; 15(6):. PubMed ID: 38930734 [TBL] [Abstract][Full Text] [Related]
12. Experimental study on the thermal performance of ultra-thin flat heat pipes with novel multiscale striped composite wick structures. Wang M; Yang Y; Sun Y; Li J; Hao M Heliyon; 2023 Oct; 9(10):e20840. PubMed ID: 37867792 [TBL] [Abstract][Full Text] [Related]
13. Droplet Evaporation on Porous Nanochannels for High Heat Flux Dissipation. Poudel S; Zou A; Maroo SC ACS Appl Mater Interfaces; 2021 Jan; 13(1):1853-1860. PubMed ID: 33371662 [TBL] [Abstract][Full Text] [Related]
14. Biomimetic Copper Forest Wick Enables High Thermal Conductivity Ultrathin Heat Pipe. Luo JL; Mo DC; Wang YQ; Lyu SS ACS Nano; 2021 Apr; 15(4):6614-6621. PubMed ID: 33792288 [TBL] [Abstract][Full Text] [Related]
15. Superior Heat and Mass Transfer Performance of Bionic Wick with Finger-like Pores Inspired by the Stomatal Array of Natural Leaf. Xu K; Long L; Chen C; Ye H Langmuir; 2024 May; 40(19):10129-10142. PubMed ID: 38700156 [TBL] [Abstract][Full Text] [Related]
16. Heat removal from bipolar transistor by loop heat pipe with nickel and copper porous structures. Nemec P; Smitka M; Malcho M ScientificWorldJournal; 2014; 2014():724740. PubMed ID: 24959622 [TBL] [Abstract][Full Text] [Related]
17. Dynamic Evolution of the Evaporating Liquid-Vapor Interface in Micropillar Arrays. Antao DS; Adera S; Zhu Y; Farias E; Raj R; Wang EN Langmuir; 2016 Jan; 32(2):519-26. PubMed ID: 26684395 [TBL] [Abstract][Full Text] [Related]
18. Gradient-Pattern Micro-Grooved Wicks Fabricated by the Ultraviolet Nanosecond Laser Method and Their Enhanced Capillary Performance. Huang G; Liao J; Fan C; Liu S; Miao W; Zhang Y; Ta S; Yang G; Cui C Micromachines (Basel); 2024 Jan; 15(1):. PubMed ID: 38276864 [TBL] [Abstract][Full Text] [Related]
19. Nanoporous membrane device for ultra high heat flux thermal management. Hanks DF; Lu Z; Sircar J; Salamon TR; Antao DS; Bagnall KR; Barabadi B; Wang EN Microsyst Nanoeng; 2018; 4():1. PubMed ID: 31057891 [TBL] [Abstract][Full Text] [Related]
20. Characterization of the wettability of thin nanostructured films in the presence of evaporation. Rogacs A; Steinbrenner JE; Rowlette JA; Weisse JM; Zheng XL; Goodson KE J Colloid Interface Sci; 2010 Sep; 349(1):354-60. PubMed ID: 20579656 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]