BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 34967860)

  • 1. Use of superordinate labels yields more robust and human-like visual representations in convolutional neural networks.
    Ahn S; Zelinsky GJ; Lupyan G
    J Vis; 2021 Dec; 21(13):13. PubMed ID: 34967860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Convolutional Neural Networks Outperform Feature-Based But Not Categorical Models in Explaining Object Similarity Judgments.
    Jozwik KM; Kriegeskorte N; Storrs KR; Mur M
    Front Psychol; 2017; 8():1726. PubMed ID: 29062291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural representations of the perception of handwritten digits and visual objects from a convolutional neural network compared to humans.
    Lee J; Jung M; Lustig N; Lee JH
    Hum Brain Mapp; 2023 Apr; 44(5):2018-2038. PubMed ID: 36637109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Basic level category structure emerges gradually across human ventral visual cortex.
    Iordan MC; Greene MR; Beck DM; Fei-Fei L
    J Cogn Neurosci; 2015 Jul; 27(7):1427-46. PubMed ID: 25811711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Texture-like representation of objects in human visual cortex.
    Jagadeesh AV; Gardner JL
    Proc Natl Acad Sci U S A; 2022 Apr; 119(17):e2115302119. PubMed ID: 35439063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robustness to Transformations Across Categories: Is Robustness Driven by Invariant Neural Representations?
    Jang H; Zaidi SSA; Boix X; Prasad N; Gilad-Gutnick S; Ben-Ami S; Sinha P
    Neural Comput; 2023 Nov; 35(12):1910-1937. PubMed ID: 37844328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Ventral Visual Pathway Represents Animal Appearance over Animacy, Unlike Human Behavior and Deep Neural Networks.
    Bracci S; Ritchie JB; Kalfas I; Op de Beeck HP
    J Neurosci; 2019 Aug; 39(33):6513-6525. PubMed ID: 31196934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Does training with blurred images bring convolutional neural networks closer to humans with respect to robust object recognition and internal representations?
    Yoshihara S; Fukiage T; Nishida S
    Front Psychol; 2023; 14():1047694. PubMed ID: 36874839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visual features as stepping stones toward semantics: Explaining object similarity in IT and perception with non-negative least squares.
    Jozwik KM; Kriegeskorte N; Mur M
    Neuropsychologia; 2016 Mar; 83():201-226. PubMed ID: 26493748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved object recognition using neural networks trained to mimic the brain's statistical properties.
    Federer C; Xu H; Fyshe A; Zylberberg J
    Neural Netw; 2020 Nov; 131():103-114. PubMed ID: 32771841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Invariant object recognition with trace learning and multiple stimuli present during training.
    Stringer SM; Rolls ET; Tromans JM
    Network; 2007 Jun; 18(2):161-87. PubMed ID: 17966074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perceptual and Semantic Representations at Encoding Contribute to True and False Recognition of Objects.
    Naspi L; Hoffman P; Devereux B; Morcom AM
    J Neurosci; 2021 Oct; 41(40):8375-8389. PubMed ID: 34413205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The representational hierarchy in human and artificial visual systems in the presence of object-scene regularities.
    Bracci S; Mraz J; Zeman A; Leys G; Op de Beeck H
    PLoS Comput Biol; 2023 Apr; 19(4):e1011086. PubMed ID: 37115763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emergence of Visual Center-Periphery Spatial Organization in Deep Convolutional Neural Networks.
    Mohsenzadeh Y; Mullin C; Lahner B; Oliva A
    Sci Rep; 2020 Mar; 10(1):4638. PubMed ID: 32170209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Within-category representational stability through the lens of manipulable objects.
    Lee D; Almeida J
    Cortex; 2021 Apr; 137():282-291. PubMed ID: 33662692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An ecologically motivated image dataset for deep learning yields better models of human vision.
    Mehrer J; Spoerer CJ; Jones EC; Kriegeskorte N; Kietzmann TC
    Proc Natl Acad Sci U S A; 2021 Feb; 118(8):. PubMed ID: 33593900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Examining the Coding Strength of Object Identity and Nonidentity Features in Human Occipito-Temporal Cortex and Convolutional Neural Networks.
    Xu Y; Vaziri-Pashkam M
    J Neurosci; 2021 May; 41(19):4234-4252. PubMed ID: 33789916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Invariant recognition drives neural representations of action sequences.
    Tacchetti A; Isik L; Poggio T
    PLoS Comput Biol; 2017 Dec; 13(12):e1005859. PubMed ID: 29253864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noise-trained deep neural networks effectively predict human vision and its neural responses to challenging images.
    Jang H; McCormack D; Tong F
    PLoS Biol; 2021 Dec; 19(12):e3001418. PubMed ID: 34882676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How does the brain rapidly learn and reorganize view-invariant and position-invariant object representations in the inferotemporal cortex?
    Cao Y; Grossberg S; Markowitz J
    Neural Netw; 2011 Dec; 24(10):1050-61. PubMed ID: 21596523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.