These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 34967936)

  • 1. Embeddings from protein language models predict conservation and variant effects.
    Marquet C; Heinzinger M; Olenyi T; Dallago C; Erckert K; Bernhofer M; Nechaev D; Rost B
    Hum Genet; 2022 Oct; 141(10):1629-1647. PubMed ID: 34967936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SETH predicts nuances of residue disorder from protein embeddings.
    Ilzhöfer D; Heinzinger M; Rost B
    Front Bioinform; 2022; 2():1019597. PubMed ID: 36304335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein language-model embeddings for fast, accurate, and alignment-free protein structure prediction.
    Weissenow K; Heinzinger M; Rost B
    Structure; 2022 Aug; 30(8):1169-1177.e4. PubMed ID: 35609601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing the role of evolutionary information for enhancing protein language model embeddings.
    Erckert K; Rost B
    Sci Rep; 2024 Sep; 14(1):20692. PubMed ID: 39237735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ProtTrans: Toward Understanding the Language of Life Through Self-Supervised Learning.
    Elnaggar A; Heinzinger M; Dallago C; Rehawi G; Wang Y; Jones L; Gibbs T; Feher T; Angerer C; Steinegger M; Bhowmik D; Rost B
    IEEE Trans Pattern Anal Mach Intell; 2022 Oct; 44(10):7112-7127. PubMed ID: 34232869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TMbed: transmembrane proteins predicted through language model embeddings.
    Bernhofer M; Rost B
    BMC Bioinformatics; 2022 Aug; 23(1):326. PubMed ID: 35941534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LambdaPP: Fast and accessible protein-specific phenotype predictions.
    Olenyi T; Marquet C; Heinzinger M; Kröger B; Nikolova T; Bernhofer M; Sändig P; Schütze K; Littmann M; Mirdita M; Steinegger M; Dallago C; Rost B
    Protein Sci; 2023 Jan; 32(1):e4524. PubMed ID: 36454227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TransEFVP: A Two-Stage Approach for the Prediction of Human Pathogenic Variants Based on Protein Sequence Embedding Fusion.
    Yan Z; Ge F; Liu Y; Zhang Y; Li F; Song J; Yu DJ
    J Chem Inf Model; 2024 Feb; 64(4):1407-1418. PubMed ID: 38334115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein embeddings predict binding residues in disordered regions.
    Jahn LR; Marquet C; Heinzinger M; Rost B
    Sci Rep; 2024 Jun; 14(1):13566. PubMed ID: 38866950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variant effect predictions capture some aspects of deep mutational scanning experiments.
    Reeb J; Wirth T; Rost B
    BMC Bioinformatics; 2020 Mar; 21(1):107. PubMed ID: 32183714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light attention predicts protein location from the language of life.
    Stärk H; Dallago C; Heinzinger M; Rost B
    Bioinform Adv; 2021; 1(1):vbab035. PubMed ID: 36700108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LMCrot: an enhanced protein crotonylation site predictor by leveraging an interpretable window-level embedding from a transformer-based protein language model.
    Pratyush P; Bahmani S; Pokharel S; Ismail HD; Kc DB
    Bioinformatics; 2024 May; 40(5):. PubMed ID: 38662579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An analysis of protein language model embeddings for fold prediction.
    Villegas-Morcillo A; Gomez AM; Sanchez V
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35443054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leveraging protein language models for accurate multiple sequence alignments.
    McWhite CD; Armour-Garb I; Singh M
    Genome Res; 2023 Jul; 33(7):1145-1153. PubMed ID: 37414576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein embeddings and deep learning predict binding residues for various ligand classes.
    Littmann M; Heinzinger M; Dallago C; Weissenow K; Rost B
    Sci Rep; 2021 Dec; 11(1):23916. PubMed ID: 34903827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EvoRator2: Predicting Site-specific Amino Acid Substitutions Based on Protein Structural Information Using Deep Learning.
    Nagar N; Tubiana J; Loewenthal G; Wolfson HJ; Ben Tal N; Pupko T
    J Mol Biol; 2023 Jul; 435(14):168155. PubMed ID: 37356902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling aspects of the language of life through transfer-learning protein sequences.
    Heinzinger M; Elnaggar A; Wang Y; Dallago C; Nechaev D; Matthes F; Rost B
    BMC Bioinformatics; 2019 Dec; 20(1):723. PubMed ID: 31847804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. pLM-BLAST: distant homology detection based on direct comparison of sequence representations from protein language models.
    Kaminski K; Ludwiczak J; Pawlicki K; Alva V; Dunin-Horkawicz S
    Bioinformatics; 2023 Oct; 39(10):. PubMed ID: 37725369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. pLM4ACE: A protein language model based predictor for antihypertensive peptide screening.
    Du Z; Ding X; Hsu W; Munir A; Xu Y; Li Y
    Food Chem; 2024 Jan; 431():137162. PubMed ID: 37604011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contrastive learning on protein embeddings enlightens midnight zone.
    Heinzinger M; Littmann M; Sillitoe I; Bordin N; Orengo C; Rost B
    NAR Genom Bioinform; 2022 Jun; 4(2):lqac043. PubMed ID: 35702380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.