These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 34968025)

  • 1. Probing the Tribochemical Impact on Wear Rate Dynamics of Hydrogenated Amorphous Carbon via Raman-Based Profilometry.
    Xu N; Wang C; Yang L; Jose G; Morina A
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):2071-2081. PubMed ID: 34968025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the Friction Reduction Mechanism Based on Molybdenum Disulfide Tribofilm Formation and Removal.
    Xu D; Wang C; Espejo C; Wang J; Neville A; Morina A
    Langmuir; 2018 Nov; 34(45):13523-13533. PubMed ID: 30347974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon-based tribofilms from lubricating oils.
    Erdemir A; Ramirez G; Eryilmaz OL; Narayanan B; Liao Y; Kamath G; Sankaranarayanan SK
    Nature; 2016 Aug; 536(7614):67-71. PubMed ID: 27488799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature dependence of molybdenum dialkyl dithiocarbamate (MoDTC) tribofilms via time-resolved Raman spectroscopy.
    Garcia CE; Ueda M; Spikes H; Wong JSS
    Sci Rep; 2021 Feb; 11(1):3621. PubMed ID: 33574354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust Interfacial Tribofilms by Borate- and Polymer-Coated ZnO Nanoparticles Leading to Improved Wear Protection under a Boundary Lubrication Regime.
    Vyavhare K; Timmons RB; Erdemir A; Edwards BL; Aswath PB
    Langmuir; 2021 Feb; 37(5):1743-1759. PubMed ID: 33502870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wear Mechanisms, Composition and Thickness of Antiwear Tribofilms Formed from Multi-Component Lubricants.
    Tsai AE; Komvopoulos K
    Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation and Nature of Carbon-Containing Tribofilms.
    Wu H; Khan AM; Johnson B; Sasikumar K; Chung YW; Wang QJ
    ACS Appl Mater Interfaces; 2019 May; 11(17):16139-16146. PubMed ID: 30951286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Achieving Ultralow Friction and Wear by Tribocatalysis: Enabled by
    Berman D; Erdemir A
    ACS Nano; 2021 Dec; 15(12):18865-18879. PubMed ID: 34914361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrastable Lubricating Properties of Robust Self-Repairing Tribofilms Enabled by in Situ-Assembled Polydopamine Nanoparticles.
    Chen G; Zhao J; Chen K; Liu S; Zhang M; He Y; Luo J
    Langmuir; 2020 Feb; 36(4):852-861. PubMed ID: 31898907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding Tribofilm Formation Mechanisms in Ionic Liquid Lubrication.
    Zhou Y; Leonard DN; Guo W; Qu J
    Sci Rep; 2017 Aug; 7(1):8426. PubMed ID: 28814747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving Tribological Properties of Multialkylated Cyclopentanes under Simulated Space Environment: Two Feasible Approaches.
    Fan X; Wang L; Li W; Wan S
    ACS Appl Mater Interfaces; 2015 Jul; 7(26):14359-68. PubMed ID: 26067481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultralow Boundary Lubrication Friction by Three-Way Synergistic Interactions among Ionic Liquid, Friction Modifier, and Dispersant.
    Li W; Kumara C; Luo H; Meyer HM; He X; Ngo D; Kim SH; Qu J
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):17077-17090. PubMed ID: 32189490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the Impact of Tribolayers on Enhanced Wear Resistance Behavior of Carbon-Rich Molybdenum-Based Coatings.
    Dinesh Kumar D; Hazra S; Panda K; Kuppusami P; Stimpel-Lindner T; Duesberg GS
    ACS Appl Mater Interfaces; 2022 Jun; 14(22):26148-26161. PubMed ID: 35635256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MoVN-Cu Coatings for In Situ Tribocatalytic Formation of Carbon-Rich Tribofilms in Low-Viscosity Fuels.
    Jacques K; Shirani A; Smith J; Scharf TW; Walck SD; Berkebile S; Eryilmaz OL; Voevodin AA; Aouadi S; Berman D
    ACS Appl Mater Interfaces; 2023 Jun; 15(25):30070-30082. PubMed ID: 37315170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atom Probe Tomography Unveils Formation Mechanisms of Wear-Protective Tribofilms by ZDDP, Ionic Liquid, and Their Combination.
    Guo W; Zhou Y; Sang X; Leonard DN; Qu J; Poplawsky JD
    ACS Appl Mater Interfaces; 2017 Jul; 9(27):23152-23163. PubMed ID: 28632986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Se Nanopowder Conversion into Lubricious 2D Selenide Layers by Tribochemical Reactions.
    Grützmacher PG; Cutini M; Marquis E; Rodríguez Ripoll M; Riedl H; Kutrowatz P; Bug S; Hsu CJ; Bernardi J; Gachot C; Erdemir A; Righi MC
    Adv Mater; 2023 Oct; 35(42):e2302076. PubMed ID: 37247210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the Adsorption Mechanism of Manganese Phosphate Conversion Coating Derived Tribofilms.
    Ernens D; Langedijk G; Smit P; de Rooij MB; Pasaribu HR; Schipper DJ
    Tribol Lett; 2018; 66(4):131. PubMed ID: 30930592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of contact load on CoCrMo wear and the formation and retention of tribofilms.
    Wimmer MA; Laurent MP; Mathew MT; Nagelli C; Liao Y; Marks LD; Jacobs JJ; Fischer A
    Wear; 2015; 332-333():643-649. PubMed ID: 26085697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoscale Generation of Robust Solid Films from Liquid-Dispersed Nanoparticles via in Situ Atomic Force Microscopy: Growth Kinetics and Nanomechanical Properties.
    Khare HS; Lahouij I; Jackson A; Feng G; Chen Z; Cooper GD; Carpick RW
    ACS Appl Mater Interfaces; 2018 Nov; 10(46):40335-40347. PubMed ID: 30335945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tribological Performance of Nanocomposite Carbon Lubricant Additive.
    Xue C; Wang S; Wen D; Wang G; Wang Y
    Materials (Basel); 2019 Jan; 12(1):. PubMed ID: 30621223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.