These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 34968041)

  • 1. Revolutionizing Membrane Design Using Machine Learning-Bayesian Optimization.
    Gao H; Zhong S; Zhang W; Igou T; Berger E; Reid E; Zhao Y; Lambeth D; Gan L; Afolabi MA; Tong Z; Lan G; Chen Y
    Environ Sci Technol; 2022 Feb; 56(4):2572-2581. PubMed ID: 34968041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine Learning Guided Polyamide Membrane with Exceptional Solute-Solute Selectivity and Permeance.
    Deng H; Luo Z; Imbrogno J; Swenson TM; Jiang Z; Wang X; Zhang S
    Environ Sci Technol; 2023 Nov; 57(46):17841-17850. PubMed ID: 36576929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Refining hydrogel-based sorbent design for efficient toxic metal removal using machine learning-Bayesian optimization.
    Zhang J; Fu K; Wang D; Zhou S; Luo J
    J Hazard Mater; 2024 Nov; 479():135688. PubMed ID: 39236540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learning for layer-by-layer nanofiltration membrane performance prediction and polymer candidate exploration.
    Wang C; Wang L; Yu H; Seo A; Wang Z; Rajabzadeh S; Ni BJ; Shon HK
    Chemosphere; 2024 Feb; 350():140999. PubMed ID: 38151066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of Machine Learning Models for Ion-Selective Electrode Cation Sensor Design.
    Huang Y; Zhong S; Gan L; Chen Y
    ACS ES T Eng; 2024 Jul; 4(7):1702-1711. PubMed ID: 39021402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine Learning for Biological Design.
    Blau T; Chades I; Ong CS
    Methods Mol Biol; 2024; 2760():319-344. PubMed ID: 38468097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparing the Pfizer Central Nervous System Multiparameter Optimization Calculator and a BBB Machine Learning Model.
    Urbina F; Zorn KM; Brunner D; Ekins S
    ACS Chem Neurosci; 2021 Jun; 12(12):2247-2253. PubMed ID: 34028255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine Learning for Polymer Design to Enhance Pervaporation-Based Organic Recovery.
    Yang M; Zhu JJ; McGaughey AL; Priestley RD; Hoek EMV; Jassby D; Ren ZJ
    Environ Sci Technol; 2024 Jun; 58(23):10128-10139. PubMed ID: 38743597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Utilizing Machine Learning for Efficient Parameterization of Coarse Grained Molecular Force Fields.
    McDonagh JL; Shkurti A; Bray DJ; Anderson RL; Pyzer-Knapp EO
    J Chem Inf Model; 2019 Oct; 59(10):4278-4288. PubMed ID: 31549507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Facile and Scalable Fabrication Procedure for Thin-Film Composite Membranes: Integration of Phase Inversion and Interfacial Polymerization.
    Liu Y; Zhu J; Zheng J; Gao X; Wang J; Wang X; Xie YF; Huang X; Van der Bruggen B
    Environ Sci Technol; 2020 Feb; 54(3):1946-1954. PubMed ID: 31916754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Guiding Mineralization Co-Culture Discovery Using Bayesian Optimization.
    Daly AJ; Stock M; Baetens JM; De Baets B
    Environ Sci Technol; 2019 Dec; 53(24):14459-14469. PubMed ID: 31682110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of machine learning and Bayesian modelling for molecular serotyping.
    Newton R; Wernisch L
    BMC Genomics; 2017 Aug; 18(1):606. PubMed ID: 28800724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bayesian estimation of multidimensional latent variables and its asymptotic accuracy.
    Yamazaki K
    Neural Netw; 2018 Sep; 105():14-25. PubMed ID: 29763741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of Biopharmaceutical Formulations Accelerated by Machine Learning.
    Narayanan H; Dingfelder F; Condado Morales I; Patel B; Heding KE; Bjelke JR; Egebjerg T; Butté A; Sokolov M; Lorenzen N; Arosio P
    Mol Pharm; 2021 Oct; 18(10):3843-3853. PubMed ID: 34519511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thin-film composite pressure retarded osmosis membranes for sustainable power generation from salinity gradients.
    Yip NY; Tiraferri A; Phillip WA; Schiffman JD; Hoover LA; Kim YC; Elimelech M
    Environ Sci Technol; 2011 May; 45(10):4360-9. PubMed ID: 21491936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication and performance of PET mesh enhanced cellulose acetate membranes for forward osmosis.
    Li G; Wang J; Hou D; Bai Y; Liu H
    J Environ Sci (China); 2016 Jul; 45():7-17. PubMed ID: 27372114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic generation of functional peptides with desired bioactivity and membrane permeability using Bayesian optimization.
    Fukunaga I; Matsukiyo Y; Kaitoh K; Yamanishi Y
    Mol Inform; 2024 Apr; 43(4):e202300148. PubMed ID: 38182544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spiderweb Nanomechanical Resonators via Bayesian Optimization: Inspired by Nature and Guided by Machine Learning.
    Shin D; Cupertino A; de Jong MHJ; Steeneken PG; Bessa MA; Norte RA
    Adv Mater; 2022 Jan; 34(3):e2106248. PubMed ID: 34695265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bayesian optimization for computationally extensive probability distributions.
    Tamura R; Hukushima K
    PLoS One; 2018; 13(3):e0193785. PubMed ID: 29505596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting Micropollutant Removal by Reverse Osmosis and Nanofiltration Membranes: Is Machine Learning Viable?
    Jeong N; Chung TH; Tong T
    Environ Sci Technol; 2021 Aug; 55(16):11348-11359. PubMed ID: 34342439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.