These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 34968058)

  • 1. Predicting Spontaneous Orientational Self-Assembly:
    Prampolini G; Greff da Silveira L; Vilhena JG; Livotto PR
    J Phys Chem Lett; 2022 Jan; 13(1):243-250. PubMed ID: 34968058
    [No Abstract]   [Full Text] [Related]  

  • 2. Accurate Quantum-Mechanically Derived Force-Fields through a Fragment-Based Approach: Balancing Specificity and Transferability in the Prediction of Self-Assembly in Soft Matter.
    Greff da Silveira L; Livotto PR; Padula D; Vilhena JG; Prampolini G
    J Chem Theory Comput; 2022 Nov; 18(11):6905-6919. PubMed ID: 36260420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated Parameterization of Quantum Mechanically Derived Force Fields for Soft Materials and Complex Fluids: Development and Validation.
    Vilhena JG; Greff da Silveira L; Livotto PR; Cacelli I; Prampolini G
    J Chem Theory Comput; 2021 Jul; 17(7):4449-4464. PubMed ID: 34185536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accounting for Vibronic Features through a Mixed Quantum-Classical Scheme: Structure, Dynamics, and Absorption Spectra of a Perylene Diimide Dye in Solution.
    Segalina A; Cerezo J; Prampolini G; Santoro F; Pastore M
    J Chem Theory Comput; 2020 Nov; 16(11):7061-7077. PubMed ID: 33124412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomolecular force fields: where have we been, where are we now, where do we need to go and how do we get there?
    Dauber-Osguthorpe P; Hagler AT
    J Comput Aided Mol Des; 2019 Feb; 33(2):133-203. PubMed ID: 30506158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying the Self-Assembly Behavior of Anisotropic Nanoparticles Using Liquid-Phase Transmission Electron Microscopy.
    Luo B; Smith JW; Ou Z; Chen Q
    Acc Chem Res; 2017 May; 50(5):1125-1133. PubMed ID: 28443654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformation Dependence of Diphenylalanine Self-Assembly Structures and Dynamics: Insights from Hybrid-Resolution Simulations.
    Xiong Q; Jiang Y; Cai X; Yang F; Li Z; Han W
    ACS Nano; 2019 Apr; 13(4):4455-4468. PubMed ID: 30869864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interfacial properties and design of functional energy materials.
    Sumpter BG; Liang L; Nicolaï A; Meunier V
    Acc Chem Res; 2014 Nov; 47(11):3395-405. PubMed ID: 24963787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iron's Wake: The Performance of Quantum Mechanical-Derived Versus General-Purpose Force Fields Tested on a Luminescent Iron Complex.
    Diez-Cabanes V; Prampolini G; Francés-Monerris A; Monari A; Pastore M
    Molecules; 2020 Jul; 25(13):. PubMed ID: 32640764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Precise Macroscopic Supramolecular Assembly by Combining Spontaneous Locomotion Driven by the Marangoni Effect and Molecular Recognition.
    Xiao M; Xian Y; Shi F
    Angew Chem Int Ed Engl; 2015 Jul; 54(31):8952-6. PubMed ID: 26095923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modification of a Single Atom Affects the Physical Properties of Double Fluorinated Fmoc-Phe Derivatives.
    Aviv M; Cohen-Gerassi D; Orr AA; Misra R; Arnon ZA; Shimon LJW; Shacham-Diamand Y; Tamamis P; Adler-Abramovich L
    Int J Mol Sci; 2021 Sep; 22(17):. PubMed ID: 34502542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Foldectures: 3D Molecular Architectures from Self-Assembly of Peptide Foldamers.
    Yoo SH; Lee HS
    Acc Chem Res; 2017 Apr; 50(4):832-841. PubMed ID: 28191927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Recognition in the Colloidal World.
    Elacqua E; Zheng X; Shillingford C; Liu M; Weck M
    Acc Chem Res; 2017 Nov; 50(11):2756-2766. PubMed ID: 28984441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soft Materials with Diverse Suprastructures via the Self-Assembly of Metal-Organic Complexes.
    Sun Y; Chen C; Stang PJ
    Acc Chem Res; 2019 Mar; 52(3):802-817. PubMed ID: 30794371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Q-Force: Quantum Mechanically Augmented Molecular Force Fields.
    Sami S; Menger MFSJ; Faraji S; Broer R; Havenith RWA
    J Chem Theory Comput; 2021 Aug; 17(8):4946-4960. PubMed ID: 34251194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diverse Role of Solvents in Controlling Supramolecular Chirality.
    Xue S; Xing P; Zhang J; Zeng Y; Zhao Y
    Chemistry; 2019 Jun; 25(31):7426-7437. PubMed ID: 30791175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and Validation of Quantum Mechanically Derived Force-Fields: Thermodynamic, Structural, and Vibrational Properties of Aromatic Heterocycles.
    Greff da Silveira L; Jacobs M; Prampolini G; Livotto PR; Cacelli I
    J Chem Theory Comput; 2018 Sep; 14(9):4884-4900. PubMed ID: 30040902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systematic and Automated Development of Quantum Mechanically Derived Force Fields: The Challenging Case of Halogenated Hydrocarbons.
    Prampolini G; Campetella M; De Mitri N; Livotto PR; Cacelli I
    J Chem Theory Comput; 2016 Nov; 12(11):5525-5540. PubMed ID: 27709949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ionic self-assembly for functional hierarchical nanostructured materials.
    Faul CF
    Acc Chem Res; 2014 Dec; 47(12):3428-38. PubMed ID: 25191750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.