These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 34968058)

  • 21. Systematic and Automated Development of Quantum Mechanically Derived Force Fields: The Challenging Case of Halogenated Hydrocarbons.
    Prampolini G; Campetella M; De Mitri N; Livotto PR; Cacelli I
    J Chem Theory Comput; 2016 Nov; 12(11):5525-5540. PubMed ID: 27709949
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ionic self-assembly for functional hierarchical nanostructured materials.
    Faul CF
    Acc Chem Res; 2014 Dec; 47(12):3428-38. PubMed ID: 25191750
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Automated parameterization of quantum-mechanically derived force-fields including explicit sigma holes: A pathway to energetic and structural features of halogen bonds in gas and condensed phase.
    Campetella M; De Mitri N; Prampolini G
    J Chem Phys; 2020 Jul; 153(4):044106. PubMed ID: 32752684
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multiscale simulations for understanding the evolution and mechanism of hierarchical peptide self-assembly.
    Yuan C; Li S; Zou Q; Ren Y; Yan X
    Phys Chem Chem Phys; 2017 Sep; 19(35):23614-23631. PubMed ID: 28537604
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Force field development phase II: Relaxation of physics-based criteria… or inclusion of more rigorous physics into the representation of molecular energetics.
    Hagler AT
    J Comput Aided Mol Des; 2019 Feb; 33(2):205-264. PubMed ID: 30506159
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Insights into the spontaneous multi-scale supramolecular assembly in an ionic liquid-based extraction system.
    Chen B; Shi C; Xiong S; Wu K; Yang Y; Mu W; Li X; Yang Y; Shen X; Peng S
    Phys Chem Chem Phys; 2022 Nov; 24(42):25950-25961. PubMed ID: 36263674
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Supramolecular oligothiophene microfibers spontaneously assembled on surfaces or coassembled with proteins inside live cells.
    Barbarella G; Di Maria F
    Acc Chem Res; 2015 Aug; 48(8):2230-41. PubMed ID: 26234700
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recent advances toward a general purpose linear-scaling quantum force field.
    Giese TJ; Huang M; Chen H; York DM
    Acc Chem Res; 2014 Sep; 47(9):2812-20. PubMed ID: 24937206
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular Clusters: Nanoscale Building Blocks for Solid-State Materials.
    Pinkard A; Champsaur AM; Roy X
    Acc Chem Res; 2018 Apr; 51(4):919-929. PubMed ID: 29605996
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simulations of inorganic-bioorganic interfaces to discover new materials: insights, comparisons to experiment, challenges, and opportunities.
    Heinz H; Ramezani-Dakhel H
    Chem Soc Rev; 2016 Jan; 45(2):412-48. PubMed ID: 26750724
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spontaneous structural transition and crystal formation in minimal supramolecular polymer model.
    Fichman G; Guterman T; Damron J; Adler-Abramovich L; Schmidt J; Kesselman E; Shimon LJ; Ramamoorthy A; Talmon Y; Gazit E
    Sci Adv; 2016 Feb; 2(2):e1500827. PubMed ID: 26933679
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Self-Assembled Bioinspired Nanocomposites.
    Lossada F; Hoenders D; Guo J; Jiao D; Walther A
    Acc Chem Res; 2020 Nov; 53(11):2622-2635. PubMed ID: 32991139
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Self-Assembly of Quantum Dot-Gold Heterodimer Nanocrystals with Orientational Order.
    Zhu H; Fan Z; Yuan Y; Wilson MA; Hills-Kimball K; Wei Z; He J; Li R; Grünwald M; Chen O
    Nano Lett; 2018 Aug; 18(8):5049-5056. PubMed ID: 29989818
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional supramolecular assemblies derived from dendritic building blocks.
    Park C; Lee J; Kim C
    Chem Commun (Camb); 2011 Nov; 47(44):12042-56. PubMed ID: 21785775
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Secondary Structure in Nonpeptidic Supramolecular Block Copolymers.
    Milton M; Deng R; Mann A; Wang C; Tang D; Weck M
    Acc Chem Res; 2021 May; 54(10):2397-2408. PubMed ID: 33914498
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Expanding the solvent chemical space for self-assembly of dipeptide nanostructures.
    Mason TO; Chirgadze DY; Levin A; Adler-Abramovich L; Gazit E; Knowles TP; Buell AK
    ACS Nano; 2014 Feb; 8(2):1243-53. PubMed ID: 24422499
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Self-Correction Strategy for Precise, Massive, and Parallel Macroscopic Supramolecular Assembly.
    Ju G; Guo F; Zhang Q; Kuehne AJC; Cui S; Cheng M; Shi F
    Adv Mater; 2017 Oct; 29(37):. PubMed ID: 28782850
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inducing spin crossover in metallo-supramolecular polyelectrolytes through an amphiphilic phase transition.
    Bodenthin Y; Pietsch U; Möhwald H; Kurth DG
    J Am Chem Soc; 2005 Mar; 127(9):3110-4. PubMed ID: 15740150
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Self-assembled poly-catenanes from supramolecular toroidal building blocks.
    Datta S; Kato Y; Higashiharaguchi S; Aratsu K; Isobe A; Saito T; Prabhu DD; Kitamoto Y; Hollamby MJ; Smith AJ; Dalgliesh R; Mahmoudi N; Pesce L; Perego C; Pavan GM; Yagai S
    Nature; 2020 Jul; 583(7816):400-405. PubMed ID: 32669695
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modeling DNA Flexibility: Comparison of Force Fields from Atomistic to Multiscale Levels.
    Minhas V; Sun T; Mirzoev A; Korolev N; Lyubartsev AP; Nordenskiöld L
    J Phys Chem B; 2020 Jan; 124(1):38-49. PubMed ID: 31805230
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.