BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 34968179)

  • 1. External Attention Assisted Multi-Phase Splenic Vascular Injury Segmentation With Limited Data.
    Zhou Y; Dreizin D; Wang Y; Liu F; Shen W; Yuille AL
    IEEE Trans Med Imaging; 2022 Jun; 41(6):1346-1357. PubMed ID: 34968179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust and efficient abdominal CT segmentation using shape constrained multi-scale attention network.
    Tong N; Xu Y; Zhang J; Gou S; Li M
    Phys Med; 2023 Jun; 110():102595. PubMed ID: 37178624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active hemorrhage and vascular injuries in splenic trauma: utility of the arterial phase in multidetector CT.
    Uyeda JW; LeBedis CA; Penn DR; Soto JA; Anderson SW
    Radiology; 2014 Jan; 270(1):99-106. PubMed ID: 24056401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks.
    Tong N; Gou S; Yang S; Ruan D; Sheng K
    Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validation of the revised 2018 AAST-OIS classification and the CT severity index for prediction of operative management and survival in patients with blunt spleen and liver injuries.
    Morell-Hofert D; Primavesi F; Fodor M; Gassner E; Kranebitter V; Braunwarth E; Haselbacher M; Nitsche UP; Schmid S; Blauth M; Öfner D; Stättner S
    Eur Radiol; 2020 Dec; 30(12):6570-6581. PubMed ID: 32696255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generative multi-adversarial network for striking the right balance in abdominal image segmentation.
    Rezaei M; Näppi JJ; Lippert C; Meinel C; Yoshida H
    Int J Comput Assist Radiol Surg; 2020 Nov; 15(11):1847-1858. PubMed ID: 32897490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks.
    Sandfort V; Yan K; Pickhardt PJ; Summers RM
    Sci Rep; 2019 Nov; 9(1):16884. PubMed ID: 31729403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-paced DenseNet with boundary constraint for automated multi-organ segmentation on abdominal CT images.
    Tong N; Gou S; Niu T; Yang S; Sheng K
    Phys Med Biol; 2020 Jul; 65(13):135011. PubMed ID: 32657281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blunt splenic trauma: delayed-phase CT for differentiation of active hemorrhage from contained vascular injury in patients.
    Anderson SW; Varghese JC; Lucey BC; Burke PA; Hirsch EF; Soto JA
    Radiology; 2007 Apr; 243(1):88-95. PubMed ID: 17293574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets.
    Hu P; Wu F; Peng J; Bao Y; Chen F; Kong D
    Int J Comput Assist Radiol Surg; 2017 Mar; 12(3):399-411. PubMed ID: 27885540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated segmentation of the injured spleen.
    Dandin O; Teomete U; Osman O; Tulum G; Ergin T; Sabuncuoglu MZ
    Int J Comput Assist Radiol Surg; 2016 Mar; 11(3):351-68. PubMed ID: 26337443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accuracy of dual bolus single acquisition computed tomography in the diagnosis and grading of adult traumatic splenic parenchymal and vascular injury.
    Marovic P; Beech PA; Koukounaras J; Kavnoudias H; Goh GS
    J Med Imaging Radiat Oncol; 2017 Dec; 61(6):725-731. PubMed ID: 28464541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reliability of injury grading systems for patients with blunt splenic trauma.
    Olthof DC; van der Vlies CH; Scheerder MJ; de Haan RJ; Beenen LF; Goslings JC; van Delden OM
    Injury; 2014 Jan; 45(1):146-50. PubMed ID: 23000055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing MR image segmentation with realistic adversarial data augmentation.
    Chen C; Qin C; Ouyang C; Li Z; Wang S; Qiu H; Chen L; Tarroni G; Bai W; Rueckert D
    Med Image Anal; 2022 Nov; 82():102597. PubMed ID: 36095907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PA-ResSeg: A phase attention residual network for liver tumor segmentation from multiphase CT images.
    Xu Y; Cai M; Lin L; Zhang Y; Hu H; Peng Z; Zhang Q; Chen Q; Mao X; Iwamoto Y; Han XH; Chen YW; Tong R
    Med Phys; 2021 Jul; 48(7):3752-3766. PubMed ID: 33950526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shape constrained fully convolutional DenseNet with adversarial training for multiorgan segmentation on head and neck CT and low-field MR images.
    Tong N; Gou S; Yang S; Cao M; Sheng K
    Med Phys; 2019 Jun; 46(6):2669-2682. PubMed ID: 31002188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiscale unsupervised domain adaptation for automatic pancreas segmentation in CT volumes using adversarial learning.
    Zhu Y; Hu P; Li X; Tian Y; Bai X; Liang T; Li J
    Med Phys; 2022 Sep; 49(9):5799-5818. PubMed ID: 35833617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CT2US: Cross-modal transfer learning for kidney segmentation in ultrasound images with synthesized data.
    Song Y; Zheng J; Lei L; Ni Z; Zhao B; Hu Y
    Ultrasonics; 2022 May; 122():106706. PubMed ID: 35149255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Abdomen CT multi-organ segmentation using token-based MLP-Mixer.
    Pan S; Chang CW; Wang T; Wynne J; Hu M; Lei Y; Liu T; Patel P; Roper J; Yang X
    Med Phys; 2023 May; 50(5):3027-3038. PubMed ID: 36463516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incorporating the hybrid deformable model for improving the performance of abdominal CT segmentation via multi-scale feature fusion network.
    Liang X; Li N; Zhang Z; Xiong J; Zhou S; Xie Y
    Med Image Anal; 2021 Oct; 73():102156. PubMed ID: 34274689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.