BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 34968225)

  • 21. Dynamics of DNA Methylation Reprogramming Influenced by X Chromosome Dosage in Induced Pluripotent Stem Cells.
    Janiszewski A; Song J; Vanheer L; De Geest N; Pasque V
    Epigenet Insights; 2018; 11():2516865718802931. PubMed ID: 30443643
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Connections between metabolism and epigenetic modifications in cancer.
    Wang G; Han JJ
    Med Rev (2021); 2021 Dec; 1(2):199-221. PubMed ID: 37724300
    [TBL] [Abstract][Full Text] [Related]  

  • 23. TET enzymes, DNA demethylation and pluripotency.
    Ross SE; Bogdanovic O
    Biochem Soc Trans; 2019 Jun; 47(3):875-885. PubMed ID: 31209155
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Alpha-ketoglutarate affects murine embryo development through metabolic and epigenetic modulations.
    Zhang Z; He C; Zhang L; Zhu T; Lv D; Li G; Song Y; Wang J; Wu H; Ji P; Liu G
    Reproduction; 2019 Aug; 158(2):123-133. PubMed ID: 31158818
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Collagen Prolyl Hydroxylation-Dependent Metabolic Perturbation Governs Epigenetic Remodeling and Mesenchymal Transition in Pluripotent and Cancer Cells.
    D'Aniello C; Cermola F; Palamidessi A; Wanderlingh LG; Gagliardi M; Migliaccio A; Varrone F; Casalino L; Matarazzo MR; De Cesare D; Scita G; Patriarca EJ; Minchiotti G
    Cancer Res; 2019 Jul; 79(13):3235-3250. PubMed ID: 31061065
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Methyl Donor Micronutrients that Modify DNA Methylation and Cancer Outcome.
    Mahmoud AM; Ali MM
    Nutrients; 2019 Mar; 11(3):. PubMed ID: 30871166
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A regulatory circuitry locking pluripotent stemness to embryonic stem cell: Interaction between threonine catabolism and histone methylation.
    Chen G; Wang J
    Semin Cancer Biol; 2019 Aug; 57():72-78. PubMed ID: 30710616
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sirtuins in Metabolic and Epigenetic Regulation of Stem Cells.
    Fang Y; Tang S; Li X
    Trends Endocrinol Metab; 2019 Mar; 30(3):177-188. PubMed ID: 30630664
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sirt6 regulates efficiency of mouse somatic reprogramming and maintenance of pluripotency.
    Xu P; Wang TT; Liu XZ; Wang NY; Sun LH; Zhang ZQ; Chen HZ; Lv X; Huang Y; Liu DP
    Stem Cell Res Ther; 2019 Jan; 10(1):9. PubMed ID: 30630525
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nicotinamide Promotes Cell Survival and Differentiation as Kinase Inhibitor in Human Pluripotent Stem Cells.
    Meng Y; Ren Z; Xu F; Zhou X; Song C; Wang VY; Liu W; Lu L; Thomson JA; Chen G
    Stem Cell Reports; 2018 Dec; 11(6):1347-1356. PubMed ID: 30503259
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metabolic regulation of pluripotency and germ cell fate through α-ketoglutarate.
    Tischler J; Gruhn WH; Reid J; Allgeyer E; Buettner F; Marr C; Theis F; Simons BD; Wernisch L; Surani MA
    EMBO J; 2019 Jan; 38(1):. PubMed ID: 30257965
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sink into the Epigenome: Histones as Repositories That Influence Cellular Metabolism.
    Ye C; Tu BP
    Trends Endocrinol Metab; 2018 Sep; 29(9):626-637. PubMed ID: 30001904
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cross Talk between One-Carbon Metabolism, Eph Signaling, and Histone Methylation Promotes Neural Stem Cell Differentiation.
    Fawal MA; Jungas T; Kischel A; Audouard C; Iacovoni JS; Davy A
    Cell Rep; 2018 Jun; 23(10):2864-2873.e7. PubMed ID: 29874574
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Vitamin C in Stem Cell Reprogramming and Cancer.
    Cimmino L; Neel BG; Aifantis I
    Trends Cell Biol; 2018 Sep; 28(9):698-708. PubMed ID: 29724526
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Folic Acid Exposure Rescues Spina Bifida Aperta Phenotypes in Human Induced Pluripotent Stem Cell Model.
    Sahakyan V; Duelen R; Tam WL; Roberts SJ; Grosemans H; Berckmans P; Ceccarelli G; Pelizzo G; Broccoli V; Deprest J; Luyten FP; Verfaillie CM; Sampaolesi M
    Sci Rep; 2018 Feb; 8(1):2942. PubMed ID: 29440666
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metabolism in Pluripotent Stem Cells and Early Mammalian Development.
    Zhang J; Zhao J; Dahan P; Lu V; Zhang C; Li H; Teitell MA
    Cell Metab; 2018 Feb; 27(2):332-338. PubMed ID: 29414683
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Understanding pluripotency under folic acid deficiency using embryonic stem cells as an in vitro model.
    Kasulanati S; Venkatesan V
    Med Hypotheses; 2018 Feb; 111():24-26. PubMed ID: 29406990
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comprehensive Mapping of Pluripotent Stem Cell Metabolism Using Dynamic Genome-Scale Network Modeling.
    Chandrasekaran S; Zhang J; Sun Z; Zhang L; Ross CA; Huang YC; Asara JM; Li H; Daley GQ; Collins JJ
    Cell Rep; 2017 Dec; 21(10):2965-2977. PubMed ID: 29212039
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spatiotemporal Control of Acetyl-CoA Metabolism in Chromatin Regulation.
    Sivanand S; Viney I; Wellen KE
    Trends Biochem Sci; 2018 Jan; 43(1):61-74. PubMed ID: 29174173
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cell fate decisions: emerging roles for metabolic signals and cell morphology.
    Tatapudy S; Aloisio F; Barber D; Nystul T
    EMBO Rep; 2017 Dec; 18(12):2105-2118. PubMed ID: 29158350
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.