BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

34 related articles for article (PubMed ID: 34968521)

  • 1. Interactions between phenanthrene and polystyrene micro/nano plastics: Implications for rice (Oryza sativa L.) toxicity.
    Zhu W; Lu S; Jiang H; Wang P; He C; Bian H; Wang J
    Environ Pollut; 2023 Nov; 337():122360. PubMed ID: 37604389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Foliar-applied polystyrene nanoplastics (PSNPs) reduce the growth and nutritional quality of lettuce (Lactuca sativa L.).
    Lian J; Liu W; Meng L; Wu J; Chao L; Zeb A; Sun Y
    Environ Pollut; 2021 Jul; 280():116978. PubMed ID: 33780844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of cadmium on polystyrene transport in parsley roots planted in a split-root system and assessment of the combined toxic effects.
    Gao M; Peng H; Zhao X; Xiao Z; Qiu W; Song Z
    Sci Total Environ; 2024 May; 924():171633. PubMed ID: 38471591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined toxic effects of polystyrene nanoplastics and lead on Chlorella vulgaris growth, membrane lipid peroxidation, antioxidant capacity, and morphological alterations.
    Khoshnamvand M; Hamidian AH; Ashtiani S; Ali J; Pei DS
    Environ Sci Pollut Res Int; 2024 Apr; 31(19):28620-28631. PubMed ID: 38561535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The photosynthetic toxicity of nano-polystyrene to Microcystis aeruginosa is influenced by surface modification and light intensity.
    Xu K; Zhao L; Juneau P; Chen Z; Zheng X; Lian Y; Li W; Huang P; Yan Q; Chen X; He Z
    Environ Pollut; 2024 May; 356():124206. PubMed ID: 38795819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptomic mechanism for foliar applied nano-ZnO alleviating phytotoxicity of nanoplastics in corn (Zea mays L.) plants.
    Guo S; Zhang X; Sun H
    Sci Total Environ; 2023 Dec; 905():166818. PubMed ID: 37722423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular Interaction of Functionalized Nanoplastics with Human Hemoglobin.
    Rajendran D; Chandrasekaran N
    J Fluoresc; 2023 Nov; 33(6):2257-2272. PubMed ID: 37014521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Indole-3-acetic acid and zinc synergistically mitigate positively charged nanoplastic-induced damage in rice.
    Xu N; Song Y; Zheng C; Li S; Yang Z; Jiang M
    J Hazard Mater; 2023 Aug; 455():131637. PubMed ID: 37210880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Screening the phytotoxicity of micro/nanoplastics through non-targeted metallomics with synchrotron radiation X-ray fluorescence and deep learning: Taking micro/nano polyethylene terephthalate as an example.
    Xie H; Wei C; Wang W; Chen R; Cui L; Wang L; Chen D; Yu YL; Li B; Li YF
    J Hazard Mater; 2024 Feb; 463():132886. PubMed ID: 37913659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aggregation behavior of polystyrene nanoplastics: Role of surface functional groups and protein and electrolyte variation.
    Guo Y; Tang N; Lu L; Li N; Hu T; Guo J; Zhang J; Zeng Z; Liang J
    Chemosphere; 2024 Feb; 350():140998. PubMed ID: 38142881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Revealing the metabolomics and biometrics underlying phytotoxicity mechanisms for polystyrene nanoplastics and dibutyl phthalate in dandelion (Taraxacum officinale).
    Li X; Zhang Y; Wang J; Zeng G; Tong X; Ullah S; Liu J; Zhou R; Lian J; Guo X; Tang Z
    Sci Total Environ; 2023 Dec; 905():167071. PubMed ID: 37714347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic insight into the impact of polystyrene microparticle on submerged plant during asexual propagules germination to seedling: Internalization in functional organs and alterations of physiological phenotypes.
    Zhang Z; Yu H; Tao M; Lv T; Li F; Yu D; Liu C
    J Hazard Mater; 2024 May; 469():133929. PubMed ID: 38452672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for the transportation of aggregated microplastics in the symplast pathway of oilseed rape roots and their impact on plant growth.
    Rong S; Wang S; Liu H; Li Y; Huang J; Wang W; Han B; Su S; Liu W
    Sci Total Environ; 2024 Feb; 912():169419. PubMed ID: 38128661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface functionalization, particle size and pharmaceutical co-contaminant dependent impact of nanoplastics on marine crustacean -
    Rajendran D; Kamalakannan M; Doss GP; Chandrasekaran N
    Environ Sci Process Impacts; 2024 Apr; ():. PubMed ID: 38655700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unveiling the Modification of Esterase-like Activity of Serum Albumin by Nanoplastics and Their Cocontaminants.
    Rajendran D; Chandrasekaran N
    ACS Omega; 2023 Nov; 8(46):43719-43731. PubMed ID: 38027364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoplastics inhibit carbon fixation in algae: The effect of aging.
    Sun Z; Zhang S; Zheng T; He C; Xu J; Lin D; Zhang L
    Heliyon; 2024 Apr; 10(8):e29814. PubMed ID: 38681555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoplastics increase
    Božičević L; Vrček V; Peranić N; Kalčec N; Vrček IV
    Arh Hig Rada Toksikol; 2024 Mar; 75(1):68-75. PubMed ID: 38548383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microplastic/nanoplastic toxicity in plants: an imminent concern.
    Roy T; Dey TK; Jamal M
    Environ Monit Assess; 2022 Oct; 195(1):27. PubMed ID: 36279030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative effects of polystyrene nanoplastics with different surface charge on seedling establishment of Chinese cabbage (Brassica rapa L.).
    Zhang H; Liang J; Luo Y; Tang N; Li X; Zhu Z; Guo J
    Chemosphere; 2022 Apr; 292():133403. PubMed ID: 34968521
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.