These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 34968594)

  • 1. Potential of anaerobic co-fermentation in wastewater treatments plants: A review.
    Perez-Esteban N; Vinardell S; Vidal-Antich C; Peña-Picola S; Chimenos JM; Peces M; Dosta J; Astals S
    Sci Total Environ; 2022 Mar; 813():152498. PubMed ID: 34968594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature-driven carboxylic acid production from waste activated sludge and food waste: Co-fermentation performance and microbial dynamics.
    Perez-Esteban N; Vives-Egea J; Peces M; Dosta J; Astals S
    Waste Manag; 2024 Apr; 178():176-185. PubMed ID: 38401431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing the potential of waste activated sludge and food waste co-fermentation for carboxylic acids production.
    Vidal-Antich C; Perez-Esteban N; Astals S; Peces M; Mata-Alvarez J; Dosta J
    Sci Total Environ; 2021 Feb; 757():143763. PubMed ID: 33288258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anaerobic co-digestion of food waste and chemically enhanced primary-treated sludge under mesophilic and thermophilic conditions.
    Obulisamy PK; Chakraborty D; Selvam A; Wong JW
    Environ Technol; 2016 Dec; 37(24):3200-7. PubMed ID: 27315419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous waste activated sludge and food waste co-fermentation for synchronously recovering vivianite and volatile fatty acids at different sludge retention times: Performance and microbial response.
    Wu Y; Cao J; Zhang Q; Xu R; Fang F; Feng Q; Li C; Xue Z; Luo J
    Bioresour Technol; 2020 Oct; 313():123610. PubMed ID: 32504871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioconversion of food waste to volatile fatty acids: Impact of microbial community, pH and retention time.
    Khatami K; Atasoy M; Ludtke M; Baresel C; Eyice Ö; Cetecioglu Z
    Chemosphere; 2021 Jul; 275():129981. PubMed ID: 33662716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of decreased hydraulic retention time on the performance and stability of co-digestion of sewage sludge with grease trap sludge and organic fraction of municipal waste.
    Grosser A
    J Environ Manage; 2017 Dec; 203(Pt 3):1143-1157. PubMed ID: 28468730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of urban waste fermentation for volatile fatty acids production.
    Moretto G; Valentino F; Pavan P; Majone M; Bolzonella D
    Waste Manag; 2019 Jun; 92():21-29. PubMed ID: 31160023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved volatile fatty acids anaerobic production from waste activated sludge by pH regulation: Alkaline or neutral pH?
    Ma H; Chen X; Liu H; Liu H; Fu B
    Waste Manag; 2016 Feb; 48():397-403. PubMed ID: 26652215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of food waste composition on acidogenic co-fermentation with waste activated sludge.
    Vidal-Antich C; Peces M; Perez-Esteban N; Mata-Alvarez J; Dosta J; Astals S
    Sci Total Environ; 2022 Nov; 849():157920. PubMed ID: 35952870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-fermentation of titanium-flocculated-sludge with food waste towards simultaneous water purification and resource recovery.
    Du J; Tian C; Xiao J; Liu Y; Zhang F; Gao X; Xing B; Zhao Y
    Water Res; 2024 Mar; 251():121110. PubMed ID: 38198972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of volatile fatty acids through co-digestion of sewage sludge and external organic waste: Effect of substrate proportions and long-term operation.
    Owusu-Agyeman I; Plaza E; Cetecioglu Z
    Waste Manag; 2020 Jul; 112():30-39. PubMed ID: 32497899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-rate iron-rich activated sludge as stabilizing agent for the anaerobic digestion of kitchen waste.
    De Vrieze J; De Lathouwer L; Verstraete W; Boon N
    Water Res; 2013 Jul; 47(11):3732-41. PubMed ID: 23726710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Co-fermentation of kitchen waste and excess sludge for organic acid production: a review].
    Gui X; Luo Y; Li Z; Nie M; Yang Y; Zhang C; Liu J
    Sheng Wu Gong Cheng Xue Bao; 2021 Feb; 37(2):448-460. PubMed ID: 33645147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Invited review: anaerobic fermentation of dairy food wastewater.
    Hassan AN; Nelson BK
    J Dairy Sci; 2012 Nov; 95(11):6188-203. PubMed ID: 22981583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biological hydrolysis and acidification of sludge under anaerobic conditions: the effect of sludge type and origin on the production and composition of volatile fatty acids.
    Ucisik AS; Henze M
    Water Res; 2008 Aug; 42(14):3729-38. PubMed ID: 18703214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anaerobic co-digestion of sewage sludge and food waste.
    Prabhu MS; Mutnuri S
    Waste Manag Res; 2016 Apr; 34(4):307-15. PubMed ID: 26879909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative evaluation of anaerobic digestion for sewage sludge and various organic wastes with simple modeling.
    Hidaka T; Wang F; Tsumori J
    Waste Manag; 2015 Sep; 43():144-51. PubMed ID: 26031329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-digestion of sewage sludge and food waste in a wastewater treatment plant based on mainstream anaerobic membrane bioreactor technology: A techno-economic evaluation.
    Vinardell S; Astals S; Koch K; Mata-Alvarez J; Dosta J
    Bioresour Technol; 2021 Jun; 330():124978. PubMed ID: 33770732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.