These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 34968606)
1. A comprehensive review on current status and future perspectives of microbial volatile fatty acids production as platform chemicals. Varghese VK; Poddar BJ; Shah MP; Purohit HJ; Khardenavis AA Sci Total Environ; 2022 Apr; 815():152500. PubMed ID: 34968606 [TBL] [Abstract][Full Text] [Related]
2. Sewage sludge acidogenic fermentation for organic resource recovery towards carbon neutrality: An experimental survey testing the headspace influence. Mineo A; Cosenza A; Mannina G Bioresour Technol; 2023 Jan; 367():128217. PubMed ID: 36332859 [TBL] [Abstract][Full Text] [Related]
3. Upgrading volatile fatty acids production through anaerobic co-fermentation of mushroom residue and sewage sludge: Performance evaluation and kinetic analysis. Fang W; Zhang P; Zhang T; Requeson DC; Poser M J Environ Manage; 2019 Jul; 241():612-618. PubMed ID: 30962005 [TBL] [Abstract][Full Text] [Related]
4. Deciphering the key operational factors and microbial features associated with volatile fatty acids production during paper wastes and sewage sludge co-fermentation. Luo J; Li Y; Li H; Li Y; Lin L; Li Y; Huang W; Cao J; Wu Y Bioresour Technol; 2022 Jan; 344(Pt B):126318. PubMed ID: 34775055 [TBL] [Abstract][Full Text] [Related]
5. Acidogenic properties of carbohydrate-rich wasted potato and microbial community analysis: Effect of pH. Li Y; Zhang X; Xu H; Mu H; Hua D; Jin F; Meng G J Biosci Bioeng; 2019 Jul; 128(1):50-55. PubMed ID: 30648546 [TBL] [Abstract][Full Text] [Related]
6. Next-generation -omics approaches to drive carboxylate production by acidogenic fermentation of food waste: a review. Kumar R; Kumar R; Brar SK; Kaur G Bioengineered; 2022; 13(7-12):14987-15002. PubMed ID: 37105768 [TBL] [Abstract][Full Text] [Related]
7. Volatile fatty acids production from saccharification residue from food waste ethanol fermentation: Effect of pH and microbial community. Jin Y; Lin Y; Wang P; Jin R; Gao M; Wang Q; Chang TC; Ma H Bioresour Technol; 2019 Nov; 292():121957. PubMed ID: 31430672 [TBL] [Abstract][Full Text] [Related]
8. Enhanced volatile fatty acids production from anaerobic fermentation of food waste: A mini-review focusing on acidogenic metabolic pathways. Zhou M; Yan B; Wong JWC; Zhang Y Bioresour Technol; 2018 Jan; 248(Pt A):68-78. PubMed ID: 28693950 [TBL] [Abstract][Full Text] [Related]
9. Valorization of sewage sludge for volatile fatty acids production and role of microbiome on acidogenic fermentation. Iglesias-Iglesias R; Campanaro S; Treu L; Kennes C; Veiga MC Bioresour Technol; 2019 Nov; 291():121817. PubMed ID: 31374412 [TBL] [Abstract][Full Text] [Related]
10. Volatile fatty acid production from mesophilic acidogenic fermentation of organic fraction of municipal solid waste and food waste under acidic and alkaline pH. Cheah YK; Vidal-Antich C; Dosta J; Mata-Álvarez J Environ Sci Pollut Res Int; 2019 Dec; 26(35):35509-35522. PubMed ID: 31111388 [TBL] [Abstract][Full Text] [Related]
11. [Co-fermentation of kitchen waste and excess sludge for organic acid production: a review]. Gui X; Luo Y; Li Z; Nie M; Yang Y; Zhang C; Liu J Sheng Wu Gong Cheng Xue Bao; 2021 Feb; 37(2):448-460. PubMed ID: 33645147 [TBL] [Abstract][Full Text] [Related]
12. Acidogenic fermentation of potato peel waste for volatile fatty acids production: Effect of initial organic load. Lu Y; Chen R; Huang L; Wang X; Chou S; Zhu J J Biotechnol; 2023 Sep; 374():114-121. PubMed ID: 37579845 [TBL] [Abstract][Full Text] [Related]
13. The capture technology matters: Composition of municipal wastewater solids drives complexity of microbial community structure and volatile fatty acid profile during anaerobic fermentation. Brison A; Rossi P; Gelb A; Derlon N Sci Total Environ; 2022 Apr; 815():152762. PubMed ID: 34990680 [TBL] [Abstract][Full Text] [Related]
14. Effect of temperature on fermentative VFAs production from waste sludge stimulated by riboflavin and the shifts of microbial community. Liu J; Huang J; Li H; Shi B; Xu Y; Liu J; Zhang D; Tang J; Hou P Water Sci Technol; 2022 Feb; 85(4):1191-1201. PubMed ID: 35228363 [TBL] [Abstract][Full Text] [Related]
15. A hybrid dry-fermentation and membrane contactor system: Enhanced volatile fatty acid (VFA) production and recovery from organic solid wastes. Yesil H; Calli B; Tugtas AE Water Res; 2021 Mar; 192():116831. PubMed ID: 33485265 [TBL] [Abstract][Full Text] [Related]
16. pH and hydraulic retention time regulation for anaerobic fermentation: Focus on volatile fatty acids production/distribution, microbial community succession and interactive correlation. Lv N; Cai G; Pan X; Li Y; Wang R; Li J; Li C; Zhu G Bioresour Technol; 2022 Mar; 347():126310. PubMed ID: 34767905 [TBL] [Abstract][Full Text] [Related]
17. Metagenomic insight of fluorene-boosted sludge acidogenic fermentation: Metabolic transformation of amino acids and monosaccharides. Zhou X; Liu T; Zhang S; Kang B; Duan X; Yan Y; Feng L; Chen Y Sci Total Environ; 2023 Mar; 865():161122. PubMed ID: 36587690 [TBL] [Abstract][Full Text] [Related]
18. Changes in volatile fatty acid production and microbiome during fermentation of food waste from hospitality sector. Rasi S; Vainio M; Blasco L; Kahala M; Leskinen H; Tampio E J Environ Manage; 2022 Apr; 308():114640. PubMed ID: 35124316 [TBL] [Abstract][Full Text] [Related]
19. Continuous acidogenic fermentation: Narrowing the gap between laboratory testing and industrial application. Garcia-Aguirre J; Esteban-Gutiérrez M; Irizar I; González-Mtnez de Goñi J; Aymerich E Bioresour Technol; 2019 Jun; 282():407-416. PubMed ID: 30884461 [TBL] [Abstract][Full Text] [Related]
20. A viable approach for commercial VFAs production from sludge: Liquid fermentation in anaerobic dynamic membrane reactor. Liu H; Wang L; Zhang X; Fu B; Liu H; Li Y; Lu X J Hazard Mater; 2019 Mar; 365():912-920. PubMed ID: 30497045 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]