BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

466 related articles for article (PubMed ID: 34968769)

  • 21. Dynamic and distinct histone modifications of osteogenic genes during osteogenic differentiation.
    Zhang YX; Sun HL; Liang H; Li K; Fan QM; Zhao QH
    J Biochem; 2015 Dec; 158(6):445-57. PubMed ID: 26078467
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Epigenetic dysregulation in mesenchymal stem cell aging and spontaneous differentiation.
    Li Z; Liu C; Xie Z; Song P; Zhao RC; Guo L; Liu Z; Wu Y
    PLoS One; 2011; 6(6):e20526. PubMed ID: 21694780
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Epigenetic regulators controlling osteogenic lineage commitment and bone formation.
    Dashti P; Lewallen EA; Gordon JAR; Montecino MA; Davie JR; Stein GS; van Leeuwen JPTM; van der Eerden BCJ; van Wijnen AJ
    Bone; 2024 Apr; 181():117043. PubMed ID: 38341164
    [TBL] [Abstract][Full Text] [Related]  

  • 24. EZH2 and KDM6A act as an epigenetic switch to regulate mesenchymal stem cell lineage specification.
    Hemming S; Cakouros D; Isenmann S; Cooper L; Menicanin D; Zannettino A; Gronthos S
    Stem Cells; 2014 Mar; 32(3):802-15. PubMed ID: 24123378
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Decoding the epigenetic language of plant development.
    Ahmad A; Zhang Y; Cao XF
    Mol Plant; 2010 Jul; 3(4):719-28. PubMed ID: 20663898
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Epigenetic Regulation of Chromatin in Prostate Cancer.
    Natesan R; Aras S; Effron SS; Asangani IA
    Adv Exp Med Biol; 2019; 1210():379-407. PubMed ID: 31900918
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chemical regulation of epigenetic modifications: opportunities for new cancer therapy.
    Zheng YG; Wu J; Chen Z; Goodman M
    Med Res Rev; 2008 Sep; 28(5):645-87. PubMed ID: 18271058
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A systematic review of epigenetic interplay in kidney diseases: Crosstalk between long noncoding RNAs and methylation, acetylation of chromatin and histone.
    Tan RZ; Jia J; Li T; Wang L; Kantawong F
    Biomed Pharmacother; 2024 Jul; 176():116922. PubMed ID: 38870627
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Epigenetics and etiology of neurodegenerative diseases].
    Gruber BM
    Postepy Hig Med Dosw (Online); 2011 Aug; 65():542-51. PubMed ID: 21918257
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Histone deacetylase inhibition promotes osteoblast maturation by altering the histone H4 epigenome and reduces Akt phosphorylation.
    Dudakovic A; Evans JM; Li Y; Middha S; McGee-Lawrence ME; van Wijnen AJ; Westendorf JJ
    J Biol Chem; 2013 Oct; 288(40):28783-91. PubMed ID: 23940046
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Epigenetics in cancer: targeting chromatin modifications.
    Ellis L; Atadja PW; Johnstone RW
    Mol Cancer Ther; 2009 Jun; 8(6):1409-20. PubMed ID: 19509247
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Epigenetic modifying enzyme expression in asthmatic airway epithelial cells and fibroblasts.
    Stefanowicz D; Ullah J; Lee K; Shaheen F; Olumese E; Fishbane N; Koo HK; Hallstrand TS; Knight DA; Hackett TL
    BMC Pulm Med; 2017 Jan; 17(1):24. PubMed ID: 28137284
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Epidrugs: novel epigenetic regulators that open a new window for targeting osteoblast differentiation.
    Ghorbaninejad M; Khademi-Shirvan M; Hosseini S; Baghaban Eslaminejad M
    Stem Cell Res Ther; 2020 Oct; 11(1):456. PubMed ID: 33115508
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Asthma epigenetics.
    Salam MT
    Adv Exp Med Biol; 2014; 795():183-99. PubMed ID: 24162909
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Post-translational modifications of histone and non-histone proteins in epigenetic regulation and translational applications in alcohol-associated liver disease: Challenges and research opportunities.
    Rungratanawanich W; Ballway JW; Wang X; Won KJ; Hardwick JP; Song BJ
    Pharmacol Ther; 2023 Nov; 251():108547. PubMed ID: 37838219
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Linking epigenetics to lipid metabolism: focus on histone deacetylases.
    Ferrari A; Fiorino E; Giudici M; Gilardi F; Galmozzi A; Mitro N; Cermenati G; Godio C; Caruso D; De Fabiani E; Crestani M
    Mol Membr Biol; 2012 Nov; 29(7):257-66. PubMed ID: 23095054
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Epigenetic approaches to regeneration of bone and cartilage from stem cells.
    Im GI; Shin KJ
    Expert Opin Biol Ther; 2015 Feb; 15(2):181-93. PubMed ID: 25283749
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The biological significance of histone modifiers in multiple myeloma: clinical applications.
    Ohguchi H; Hideshima T; Anderson KC
    Blood Cancer J; 2018 Aug; 8(9):83. PubMed ID: 30190472
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Epigenetic targeting for acute kidney injury.
    Zhuang S
    Nephrology (Carlton); 2018 Oct; 23 Suppl 4():21-25. PubMed ID: 30298650
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Epigenetic Plasticity Drives Adipogenic and Osteogenic Differentiation of Marrow-derived Mesenchymal Stem Cells.
    Meyer MB; Benkusky NA; Sen B; Rubin J; Pike JW
    J Biol Chem; 2016 Aug; 291(34):17829-47. PubMed ID: 27402842
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.