BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 34968990)

  • 21. Simultaneous estimation of cortical bone thickness and acoustic wave velocity using a multivariable optimization approach: Bone phantom and in-vitro study.
    Tasinkevych Y; Podhajecki J; Falińska K; Litniewski J
    Ultrasonics; 2016 Feb; 65():105-12. PubMed ID: 26522955
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultrasonic Guided Waves in Bone: A Decade of Advancement in Review.
    Tran TNHT; Le LH; Ta D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Oct; 69(10):2875-2895. PubMed ID: 35930519
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Wave Mode Discrimination of Coded Ultrasonic Guided Waves Using Two-Dimensional Compressed Pulse Analysis.
    Malo S; Fateri S; Livadas M; Mares C; Gan TH
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Jul; 64(7):1092-1101. PubMed ID: 28504936
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ex vivo cortical porosity and thickness predictions at the tibia using full-spectrum ultrasonic guided-wave analysis.
    Schneider J; Iori G; Ramiandrisoa D; Hammami M; Gräsel M; Chappard C; Barkmann R; Laugier P; Grimal Q; Minonzio JG; Raum K
    Arch Osteoporos; 2019 Feb; 14(1):21. PubMed ID: 30783777
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Feasibility of bone assessment with leaky Lamb waves in bone phantoms and a bovine tibia.
    Lee KI; Yoon SW
    J Acoust Soc Am; 2004 Jun; 115(6):3210-7. PubMed ID: 15237845
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Axial transmission method for long bone fracture evaluation by ultrasonic guided waves: simulation, phantom and in vitro experiments.
    Xu K; Ta D; He R; Qin YX; Wang W
    Ultrasound Med Biol; 2014 Apr; 40(4):817-27. PubMed ID: 24433749
    [TBL] [Abstract][Full Text] [Related]  

  • 27. PZT-Based Ultrasonic Guided Wave Frequency Dispersion Characteristics of Tubular Structures for Different Interfacial Boundaries.
    Yan S; Zhang B; Song G; Lin J
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30477174
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analysis of superimposed ultrasonic guided waves in long bones by the joint approximate diagonalization of eigen-matrices algorithm.
    Song X; Ta D; Wang W
    Ultrasound Med Biol; 2011 Oct; 37(10):1704-13. PubMed ID: 21924208
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Coded excitation of ultrasonic guided waves in long bone fracture assessment.
    Zhang H; Wu S; Ta D; Xu K; Wang W
    Ultrasonics; 2014 Jul; 54(5):1203-9. PubMed ID: 24289899
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mode separation of Lamb waves based on dispersion compensation method.
    Xu K; Ta D; Moilanen P; Wang W
    J Acoust Soc Am; 2012 Apr; 131(4):2714-22. PubMed ID: 22501050
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sensitivity analysis of ultrasonic guided waves propagating in trilayered bone models: a numerical study.
    Tran TNHT; Le LH; Sacchi MD; Nguyen VH
    Biomech Model Mechanobiol; 2018 Oct; 17(5):1269-1279. PubMed ID: 29777322
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Excitation of ultrasonic Lamb waves using a phased array system with two array probes: phantom and in vitro bone studies.
    Nguyen KC; Le LH; Tran TN; Sacchi MD; Lou EH
    Ultrasonics; 2014 Jul; 54(5):1178-85. PubMed ID: 24074751
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sparse SVD Method for High-Resolution Extraction of the Dispersion Curves of Ultrasonic Guided Waves.
    Xu K; Minonzio JG; Ta D; Hu B; Wang W; Laugier P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Oct; 63(10):1514-1524. PubMed ID: 27448347
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A method for the measurement of dispersion curves of circumferential guided waves radiating from curved shells: experimental validation and application to a femoral neck mimicking phantom.
    Nauleau P; Minonzio JG; Chekroun M; Cassereau D; Laugier P; Prada C; Grimal Q
    Phys Med Biol; 2016 Jul; 61(13):4746-62. PubMed ID: 27272197
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ex Vivo Assessment of Cortical Bone Properties Using Low-Frequency Ultrasonic Guided Waves.
    Pereira D; Fernandes J; Belanger P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 May; 67(5):910-922. PubMed ID: 31825866
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Combined estimation of thickness and velocities using ultrasound guided waves: a pioneering study on in vitro cortical bone samples.
    Foiret J; Minonzio JG; Chappard C; Talmant M; Laugier P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Sep; 61(9):1478-88. PubMed ID: 25167148
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Measuring the wavenumber of guided modes in waveguides with linearly varying thickness.
    Moreau L; Minonzio JG; Talmant M; Laugier P
    J Acoust Soc Am; 2014 May; 135(5):2614-24. PubMed ID: 24815245
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reconstruction of Water-Filled Pipe Ultrasonic Guided Wave Signals in the Distance Domain by Orthogonal Matching Pursuit Based on Dispersion and Multi-Mode.
    Wang Y; Tang B; Gong R; Zhou F; Chen A
    Sensors (Basel); 2023 Oct; 23(21):. PubMed ID: 37960382
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In Vivo Characterization of Cortical Bone Using Guided Waves Measured by Axial Transmission.
    Vallet Q; Bochud N; Chappard C; Laugier P; Minonzio JG
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Sep; 63(9):1361-1371. PubMed ID: 27392349
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simulation of acoustic guided wave propagation in cortical bone using a semi-analytical finite element method.
    Pereira D; Haiat G; Fernandes J; Belanger P
    J Acoust Soc Am; 2017 Apr; 141(4):2538. PubMed ID: 28464675
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.