These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 34969160)

  • 1. Constraint of musculoskeletal tissue and path planning of robot-assisted fracture reduction with collision avoidance.
    Xu H; Lei J; Hu L; Zhang L
    Int J Med Robot; 2022 Apr; 18(2):e2361. PubMed ID: 34969160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autonomous path planning for robot-assisted pelvic fracture closed reduction with collision avoidance.
    Pan M; Chen Y; Li Z; Liao X; Deng Y; Bian GB
    Int J Med Robot; 2023 Apr; 19(2):e2483. PubMed ID: 36409623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trajectory optimisation with musculoskeletal integration features for fracture reduction orthopaedic robot.
    Cui R; Li J; Jiang Y; Sun H; Tan Y; Duan L; Wu M
    Int J Med Robot; 2022 Apr; 18(2):e2372. PubMed ID: 35107208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human-robot-robot cooperative control using positioning robot and 1-DOF traction device for robot-assisted fracture reduction system.
    Kim WY; Joung S; Park H; Park JO; Ko SY
    Proc Inst Mech Eng H; 2022 May; 236(5):697-710. PubMed ID: 35234094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone collision detection method for robot assisted fracture reduction based on force curve slope.
    Cai C; Sun C; Song Y; Lv Q; Bi J; Zhang Q
    Comput Methods Programs Biomed; 2021 Sep; 209():106315. PubMed ID: 34352651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone collision detection method for robot assisted fracture reduction based on vibration excitation.
    Cai C; Zheng X; Shi M; Bi J; Zhang Q
    Comput Methods Programs Biomed; 2023 Feb; 229():107317. PubMed ID: 36563649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study on circumpelvic muscle deformation and dynamic simulation of pelvic fracture reduction.
    Lei J; Li Y; Xu H
    Comput Methods Biomech Biomed Engin; 2023 May; 26(6):734-743. PubMed ID: 35686483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Indirect visual guided fracture reduction robot based on external markers.
    Fu Z; Sun H; Dong X; Chen J; Rong H; Guo Y; Lin S
    Int J Med Robot; 2021 Feb; 17(1):1-11. PubMed ID: 32881221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hill-based musculoskeletal model for a fracture reduction robot.
    Tan Y; Fu Z; Duan L; Cui R; Wu M; Chen J; Guo Y; Li J; Guo X; Sun H
    Int J Med Robot; 2021 Jun; 17(3):e2252. PubMed ID: 33689227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Navigation system for robot-assisted intra-articular lower-limb fracture surgery.
    Dagnino G; Georgilas I; Köhler P; Morad S; Atkins R; Dogramadzi S
    Int J Comput Assist Radiol Surg; 2016 Oct; 11(10):1831-43. PubMed ID: 27236651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Introduction of a computer-based method for automated planning of reduction paths under consideration of simulated muscular forces.
    Buschbaum J; Fremd R; Pohlemann T; Kristen A
    Int J Comput Assist Radiol Surg; 2017 Aug; 12(8):1369-1381. PubMed ID: 28321805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robot-musculoskeletal dynamic biomechanical model in robot-assisted diaphyseal fracture reduction.
    Li C; Wang T; Hu L; Zhang L; Zhao Y; Du H; Wang L; Tang P
    Biomed Mater Eng; 2015; 26 Suppl 1():S365-74. PubMed ID: 26406025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of fracture reduction robot using force/torque measurement.
    Douke T; Nakajima Y; Mori Y; Onogi S; Sugita N; Mitsuishi M; Bessho M; Ohhashi S; Tobita K; Ohnishi I; Sakuma I; Dohi T; Maeda Y; Koyama T; Sugano N; Yonenobu K; Matsumoto Y; Nakamura K
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3265-8. PubMed ID: 19163404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Combined method of treating dislocated fractures of the calcaneus].
    Stehlík J; Stulík J
    Acta Chir Orthop Traumatol Cech; 2002; 69(4):209-18. PubMed ID: 12362623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Medical Robotics in Bone Fracture Reduction Surgery: A Review.
    Bai L; Yang J; Chen X; Sun Y; Li X
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31426577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Haptic computer-assisted patient-specific preoperative planning for orthopedic fractures surgery.
    Kovler I; Joskowicz L; Weil YA; Khoury A; Kronman A; Mosheiff R; Liebergall M; Salavarrieta J
    Int J Comput Assist Radiol Surg; 2015 Oct; 10(10):1535-46. PubMed ID: 25749801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hands-on robot-assisted fracture reduction system guided by a linear guidance constraints controller using a pre-operatively planned goal pose.
    Kim WY; Ko SY
    Int J Med Robot; 2019 Apr; 15(2):e1967. PubMed ID: 30346113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive variable impedance position/force tracking control of fracture reduction robot.
    Zheng G; Lei J; Hu L; Zhang L
    Int J Med Robot; 2023 Apr; 19(2):e2469. PubMed ID: 36302164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Analysis on muscle force and injured femoral reduction force based on new muscle tendon model].
    Zhai Y; Yu L; Chen D; Cui Z; Lei J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Aug; 38(4):732-741. PubMed ID: 34459174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An improved path planning algorithm based on artificial potential field and primal-dual neural network for surgical robot.
    Hao L; Liu D; Du S; Wang Y; Wu B; Wang Q; Zhang N
    Comput Methods Programs Biomed; 2022 Dec; 227():107202. PubMed ID: 36356385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.