These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 3496933)

  • 1. Endothelium-dependent relaxation in coronary arteries requires magnesium ions.
    Altura BT; Altura BM
    Br J Pharmacol; 1987 Jul; 91(3):449-51. PubMed ID: 3496933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential effects of magnesium on basal and agonist-induced EDRF relaxation in canine coronary arteries.
    Ku DD; Ann HS
    J Cardiovasc Pharmacol; 1991 Jun; 17(6):999-1006. PubMed ID: 1714027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characteristics of canine coronary resistance arteries: importance of endothelium.
    Myers PR; Banitt PF; Guerra R; Harrison DG
    Am J Physiol; 1989 Aug; 257(2 Pt 2):H603-10. PubMed ID: 2788367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Divalent cation regulation of endothelial-dependent relaxation in coronary blood vessels.
    Ku DD
    Microcirc Endothelium Lymphatics; 1989; 5(1-2):99-120. PubMed ID: 2796875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Importance of magnesium and potassium concentration on basal tone and 5-HT-induced contractions in canine isolated coronary artery.
    Murakawa T; Altura BT; Carella A; Altura BM
    Br J Pharmacol; 1988 Jun; 94(2):325-34. PubMed ID: 3395781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms underlying endothelium-dependent, nitric oxide- and prostanoid-independent relaxation in monkey and dog coronary arteries.
    Fujioka H; Ayajiki K; Shinozaki K; Toda N; Okamura T
    Naunyn Schmiedebergs Arch Pharmacol; 2002 Nov; 366(5):488-95. PubMed ID: 12382080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced relaxation response of canine coronary artery to isoproterenol and salbutamol after removal of endothelial cells.
    White RE; Jolly SR; Carrier GO
    Gen Pharmacol; 1986; 17(4):497-9. PubMed ID: 3019826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies of endothelium-derived relaxant factor (EDRF), its nature and mode of action.
    Griffith TM
    Eur Heart J; 1985 Jan; 6(1):37-49. PubMed ID: 3874061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Responses of the rabbit epicardial coronary artery to acetylcholine and adrenoceptor agonists.
    Corr L; Burnstock G; Poole-Wilson P
    Cardiovasc Res; 1991 Mar; 25(3):256-62. PubMed ID: 1674229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Attenuated coronary relaxation after reperfusion: effects of superoxide dismutase and TxA2 inhibitor U 63557A.
    Mehta JL; Lawson DL; Nichols WW
    Am J Physiol; 1989 Oct; 257(4 Pt 2):H1240-6. PubMed ID: 2552841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolated perfused rabbit coronary artery and aortic strip preparations: the role of endothelium-derived relaxant factor.
    Griffith TM; Henderson AH; Edwards DH; Lewis MJ
    J Physiol; 1984 Jun; 351():13-24. PubMed ID: 6611406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vascular actions of TA 3090, a novel analog of diltiazem: interaction with endothelium-dependent relaxation in canine femoral and coronary arteries.
    Rubanyi G; Iqbal A; Schwartz A; Vanhoutte PM
    J Pharmacol Exp Ther; 1991 Nov; 259(2):639-42. PubMed ID: 1941612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygen radical-mediated vascular injury selectively inhibits receptor-dependent release of nitric oxide from canine coronary arteries.
    Seccombe JF; Pearson PJ; Schaff HV
    J Thorac Cardiovasc Surg; 1994 Feb; 107(2):505-9. PubMed ID: 8302070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endothelium-dependent hyperpolarization of canine coronary smooth muscle.
    Feletou M; Vanhoutte PM
    Br J Pharmacol; 1988 Mar; 93(3):515-24. PubMed ID: 2453240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hemoglobin inhibits endothelium-dependent relaxation to acetylcholine in human coronary arteries in vivo.
    Collins P; Burman J; Chung HI; Fox K
    Circulation; 1993 Jan; 87(1):80-5. PubMed ID: 8419027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endothelial-dependent sexual dimorphism in vascular smooth muscle: role of Mg2+ and Na+.
    Zhang AM; Altura BT; Altura BM
    Br J Pharmacol; 1992 Feb; 105(2):305-10. PubMed ID: 1348443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acetylcholine stimulates release of endothelium-derived relaxing factor in coronary arteries of human organ donors.
    Blaise GA; Stewart DJ; Guérard MJ
    Can J Cardiol; 1993 Nov; 9(9):813-20. PubMed ID: 8281481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The vasodilator effect of coronary vascular endothelium in situ: its inactivation by hydroquinone.
    Bing RJ; Saeed M; Hartmann A
    J Mol Cell Cardiol; 1987 Apr; 19(4):343-8. PubMed ID: 3497279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of magnesium in the endothelial dysfunction caused by global ischemia followed by reperfusion: in vitro study of canine coronary arteries.
    Volpe MA; Carneiro JJ; Magna LA; Viaro F; Origuela EA; Evora PR
    Scand Cardiovasc J; 2003 Sep; 37(5):288-96. PubMed ID: 14534071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global myocardial ischemia and reperfusion impair endothelium-dependent relaxations to aggregating platelets in the canine coronary artery. A possible cause of vasospasm after cardiopulmonary bypass.
    Pearson PJ; Lin PJ; Schaff HV
    J Thorac Cardiovasc Surg; 1992 Jun; 103(6):1147-54. PubMed ID: 1597979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.