These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 34969458)
1. Migration and transformation of Sb are affected by Mn(III/IV) associated with lepidocrocite originating from Fe(II) oxidation. Shao Y; Sun Q; Wang L; Zhan W; Zhang H; Zhong H J Environ Sci (China); 2022 May; 115():308-318. PubMed ID: 34969458 [TBL] [Abstract][Full Text] [Related]
2. Novel Insights into Sb(III) Oxidation and Immobilization during Ferrous Iron Oxygenation: The Overlooked Roles of Singlet Oxygen and Fe (oxyhydr)oxides Formation. Wang Y; He M; Lin C; Ouyang W; Liu X Environ Sci Technol; 2024 Jul; 58(26):11470-11481. PubMed ID: 38864425 [TBL] [Abstract][Full Text] [Related]
3. Antimony oxidation and adsorption by in-situ formed biogenic Mn oxide and Fe-Mn oxides. Bai Y; Jefferson WA; Liang J; Yang T; Qu J J Environ Sci (China); 2017 Apr; 54():126-134. PubMed ID: 28391920 [TBL] [Abstract][Full Text] [Related]
4. Adsorption of antimony(V) onto Mn(II)-enriched surfaces of manganese-oxide and FeMn binary oxide. Liu R; Xu W; He Z; Lan H; Liu H; Qu J; Prasai T Chemosphere; 2015 Nov; 138():616-24. PubMed ID: 26218341 [TBL] [Abstract][Full Text] [Related]
5. Impact of Antimony(V) on Iron(II)-Catalyzed Ferrihydrite Transformation Pathways: A Novel Mineral Switch for Feroxyhyte Formation. Hockmann K; Karimian N; Schlagenhauff S; Planer-Friedrich B; Burton ED Environ Sci Technol; 2021 Apr; 55(8):4954-4963. PubMed ID: 33710876 [TBL] [Abstract][Full Text] [Related]
6. The mechanism of antimony(III) removal and its reactions on the surfaces of Fe-Mn binary oxide. Xu W; Wang H; Liu R; Zhao X; Qu J J Colloid Interface Sci; 2011 Nov; 363(1):320-6. PubMed ID: 21840528 [TBL] [Abstract][Full Text] [Related]
7. Antimony speciation and mobility during Fe(II)-induced transformation of humic acid-antimony(V)-iron(III) coprecipitates. Karimian N; Burton ED; Johnston SG Environ Pollut; 2019 Nov; 254(Pt B):113112. PubMed ID: 31479811 [TBL] [Abstract][Full Text] [Related]
8. Antimony and Arsenic Behavior during Fe(II)-Induced Transformation of Jarosite. Karimian N; Johnston SG; Burton ED Environ Sci Technol; 2017 Apr; 51(8):4259-4268. PubMed ID: 28347133 [TBL] [Abstract][Full Text] [Related]
9. Antimonate Controls Manganese(II)-Induced Transformation of Birnessite at a Circumneutral pH. Karimian N; Hockmann K; Planer-Friedrich B; Johnston SG; Burton ED Environ Sci Technol; 2021 Jul; 55(14):9854-9863. PubMed ID: 34228928 [TBL] [Abstract][Full Text] [Related]
10. Abiotic reduction of antimony(V) by green rust (Fe(4)(II)Fe(2)(III)(OH)(12)SO(4).3H(2)O). Mitsunobu S; Takahashi Y; Sakai Y Chemosphere; 2008 Jan; 70(5):942-7. PubMed ID: 17761212 [TBL] [Abstract][Full Text] [Related]
11. Induced transformation of antimony trioxide by Mn(II) oxidation and their co-transformed mechanism. Lv Y; Zhang C; Nan C; Fan Z; Huang S J Environ Sci (China); 2023 Jul; 129():69-78. PubMed ID: 36804243 [TBL] [Abstract][Full Text] [Related]
12. Immobilization mechanism of antimony by applying zirconium-manganese oxide in soil. Rong Q; Nong X; Zhang C; Zhong K; Zhao H Sci Total Environ; 2022 Jun; 823():153435. PubMed ID: 35092780 [TBL] [Abstract][Full Text] [Related]
13. Antimony oxidation and sorption behavior on birnessites with different properties (δ-MnO Sun Q; Cui PX; Liu C; Peng SM; Alves ME; Zhou DM; Shi ZQ; Wang YJ Environ Pollut; 2019 Mar; 246():990-998. PubMed ID: 31159148 [TBL] [Abstract][Full Text] [Related]
14. The Chemical Oxidation and Immobilization of Arsenic and Antimony in Simulated AMD in Karst Areas. Zhu J; Liao P; Zhang P Bull Environ Contam Toxicol; 2022 Mar; 108(3):541-548. PubMed ID: 35230453 [TBL] [Abstract][Full Text] [Related]
15. Insight into the reactions of antimonite with manganese oxides: Synergistic effects of Mn(III) and oxygen vacancies. Wei D; Liu J; Luo Z; Xie X Water Res; 2023 Apr; 232():119681. PubMed ID: 36736246 [TBL] [Abstract][Full Text] [Related]
16. Facile preparation of novel magnetic mesoporous FeMn binary oxides from Mn encapsulated carboxymethyl cellulose-Fe(III) hydrogel for antimony removal from water. Li Q; Ma X; Qi C; Li R; Zhang W; Li J; Shen J; Sun X Sci Total Environ; 2022 May; 821():153529. PubMed ID: 35101497 [TBL] [Abstract][Full Text] [Related]
17. Characteristics of Fe and Mn bearing precipitates generated by Fe(II) and Mn(II) co-oxidation with O Ahmad A; van der Wal A; Bhattacharya P; van Genuchten CM Water Res; 2019 Sep; 161():505-516. PubMed ID: 31229731 [TBL] [Abstract][Full Text] [Related]
18. Interaction mechanisms and kinetics of ferrous ion and hexagonal birnessite in aqueous systems. Gao T; Shen Y; Jia Z; Qiu G; Liu F; Zhang Y; Feng X; Cai C Geochem Trans; 2015 Dec; 16(1):16. PubMed ID: 26435697 [TBL] [Abstract][Full Text] [Related]
19. Oxidation of antimony (III) in soil by manganese (IV) oxide using X-ray absorption fine structure. Fu L; Shozugawa K; Matsuo M J Environ Sci (China); 2018 Nov; 73():31-37. PubMed ID: 30290869 [TBL] [Abstract][Full Text] [Related]
20. The antimony sorption and transport mechanisms in removal experiment by Mn-coated biochar. Jia X; Zhou J; Liu J; Liu P; Yu L; Wen B; Feng Y Sci Total Environ; 2020 Jul; 724():138158. PubMed ID: 32247137 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]