These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 34969659)

  • 1. Comparison of Tissue Abundance of Non-Cytochrome P450 Drug-Metabolizing Enzymes by Quantitative Proteomics between Humans and Laboratory Animal Species.
    Basit A; Fan PW; Khojasteh SC; Murray BP; Smith BJ; Heyward S; Prasad B
    Drug Metab Dispos; 2022 Mar; 50(3):197-203. PubMed ID: 34969659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of Differential Tissue Abundance of Major Non-CYP Enzymes in Human.
    Basit A; Neradugomma NK; Wolford C; Fan PW; Murray B; Takahashi RH; Khojasteh SC; Smith BJ; Heyward S; Totah RA; Kelly EJ; Prasad B
    Mol Pharm; 2020 Nov; 17(11):4114-4124. PubMed ID: 32955894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative ADME proteomics - CYP and UGT enzymes in the Beagle dog liver and intestine.
    Heikkinen AT; Friedlein A; Matondo M; Hatley OJ; Petsalo A; Juvonen R; Galetin A; Rostami-Hodjegan A; Aebersold R; Lamerz J; Dunkley T; Cutler P; Parrott N
    Pharm Res; 2015 Jan; 32(1):74-90. PubMed ID: 25033762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Absolute Quantitation of Drug-Metabolizing Cytochrome P450 Enzymes and Accessory Proteins in Dog Liver Microsomes Using Label-Free Standard-Free Analysis Reveals Interbreed Variability.
    Martinez SE; Shi J; Zhu HJ; Perez Jimenez TE; Zhu Z; Court MH
    Drug Metab Dispos; 2019 Nov; 47(11):1314-1324. PubMed ID: 31427433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential Tissue Abundance of Membrane-Bound Drug Metabolizing Enzymes and Transporter Proteins by Global Proteomics.
    Singh DK; Ahire D; Davydov DR; Prasad B
    Drug Metab Dispos; 2024 Oct; 52(11):1152-1160. PubMed ID: 38641346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interspecies variability in expression of hepatobiliary transporters across human, dog, monkey, and rat as determined by quantitative proteomics.
    Wang L; Prasad B; Salphati L; Chu X; Gupta A; Hop CE; Evers R; Unadkat JD
    Drug Metab Dispos; 2015 Mar; 43(3):367-74. PubMed ID: 25534768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative Intra-Subject Analysis of Gene Expression and Protein Abundance of Major and Minor Drug Metabolizing Enzymes in Healthy Human Jejunum and Liver.
    Wenzel C; Lapczuk-Romanska J; Malinowski D; Ostrowski M; Drozdzik M; Oswald S
    Clin Pharmacol Ther; 2024 Feb; 115(2):221-230. PubMed ID: 37739780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparisons of phase I and phase II in vitro hepatic enzyme activities of human, dog, rhesus monkey, and cynomolgus monkey.
    Sharer JE; Shipley LA; Vandenbranden MR; Binkley SN; Wrighton SA
    Drug Metab Dispos; 1995 Nov; 23(11):1231-41. PubMed ID: 8591724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative Characterization of Clinically Relevant Drug-Metabolizing Enzymes and Transporters in Rat Liver and Intestinal Segments for Applications in PBPK Modeling.
    Sharma S; Singh DK; Mettu VS; Yue G; Ahire D; Basit A; Heyward S; Prasad B
    Mol Pharm; 2023 Mar; 20(3):1737-1749. PubMed ID: 36791335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Abundance of Phase 1 and 2 Drug-Metabolizing Enzymes in Alcoholic and Hepatitis C Cirrhotic Livers: A Quantitative Targeted Proteomics Study.
    Prasad B; Bhatt DK; Johnson K; Chapa R; Chu X; Salphati L; Xiao G; Lee C; Hop CECA; Mathias A; Lai Y; Liao M; Humphreys WG; Kumer SC; Unadkat JD
    Drug Metab Dispos; 2018 Jul; 46(7):943-952. PubMed ID: 29695616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic polymorphisms of drug-metabolizing cytochrome P450 enzymes in cynomolgus and rhesus monkeys and common marmosets in preclinical studies for humans.
    Uno Y; Uehara S; Yamazaki H
    Biochem Pharmacol; 2018 Jul; 153():184-195. PubMed ID: 29277691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preclinical pharmacokinetics and metabolism of 6-(4-(2,5-difluorophenyl)oxazol-5-yl)-3-isopropyl-[1,2,4]-triazolo[4,3-a]pyridine, a novel and selective p38alpha inhibitor: identification of an active metabolite in preclinical species and human liver microsomes.
    Kalgutkar AS; Hatch HL; Kosea F; Nguyen HT; Choo EF; McClure KF; Taylor TJ; Henne KR; Kuperman AV; Dombroski MA; Letavic MA
    Biopharm Drug Dispos; 2006 Nov; 27(8):371-86. PubMed ID: 16944451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcript abundance of hepatic drug-metabolizing enzymes in two dog breeds compared with 14 species including humans.
    Uno Y; Yamato O; Yamazaki H
    Drug Metab Pharmacokinet; 2024 Apr; 55():101002. PubMed ID: 38452615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro hepatic metabolism of cediranib, a potent vascular endothelial growth factor tyrosine kinase inhibitor: interspecies comparison and human enzymology.
    Schulz-Utermoehl T; Spear M; Pollard CR; Pattison C; Rollison H; Sarda S; Ward M; Bushby N; Jordan A; Harrison M
    Drug Metab Dispos; 2010 Oct; 38(10):1688-97. PubMed ID: 20634336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative Proteomics of Clinically Relevant Drug-Metabolizing Enzymes and Drug Transporters and Their Intercorrelations in the Human Small Intestine.
    Couto N; Al-Majdoub ZM; Gibson S; Davies PJ; Achour B; Harwood MD; Carlson G; Barber J; Rostami-Hodjegan A; Warhurst G
    Drug Metab Dispos; 2020 Apr; 48(4):245-254. PubMed ID: 31959703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Hepatic UDP-Glucuronosyltransferase Enzyme Abundance-Activity Correlations and Population Variability Using a Proteomics Approach and Comparison with Cytochrome P450 Enzymes.
    Takahashi RH; Forrest WF; Smith AD; Badee J; Qiu N; Schmidt S; Collier AC; Parrott N; Fowler S
    Drug Metab Dispos; 2021 Sep; 49(9):760-769. PubMed ID: 34187837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Species differences in hepatic and intestinal metabolic activities for 43 human cytochrome P450 substrates between humans and rats or dogs.
    Nishimuta H; Nakagawa T; Nomura N; Yabuki M
    Xenobiotica; 2013 Nov; 43(11):948-55. PubMed ID: 23593983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of the in vitro metabolism of psoralidin among different species and characterization of its inhibitory effect against UDP- glucuronosyltransferase (UGT) or cytochrome p450 (CYP450) enzymes.
    Shi X; Zhang G; Mackie B; Yang S; Wang J; Shan L
    J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Sep; 1029-1030():145-156. PubMed ID: 27428458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A variety of cytochrome P450 enzymes and flavin-containing monooxygenases in dogs and pigs commonly used as preclinical animal models.
    Uno Y; Shimizu M; Yamazaki H
    Biochem Pharmacol; 2024 Oct; 228():116124. PubMed ID: 38490520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drug-oxidizing and conjugating non-cytochrome P450 (non-P450) enzymes in cynomolgus monkeys and common marmosets as preclinical models for humans.
    Uno Y; Uehara S; Yamazaki H
    Biochem Pharmacol; 2022 Mar; 197():114887. PubMed ID: 34968483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.