BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 3496969)

  • 1. Kinetics of ATP-dependent Ca2+ uptake by permeabilized rat enterocytes. Effects of inositol 1,4,5-trisphosphate.
    van Corven EJ; Verbost PM; de Jong MD; van Os CH
    Cell Calcium; 1987 Jun; 8(3):197-206. PubMed ID: 3496969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inositol 1,4,5-trisphosphate induced mobilization of Ca2+ from rat brain synaptosomes.
    Gandhi CR; Ross DH
    Neurochem Res; 1987 Jan; 12(1):67-72. PubMed ID: 3494957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inositol trisphosphate and calcium mobilisation in permeabilised enterocytes.
    Ilundain A; O'Brien JA; Burton KA; Sepúlveda FV
    Biochim Biophys Acta; 1987 Jan; 896(1):113-6. PubMed ID: 3491627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ca2+ homeostasis in permeabilized human neutrophils. Characterization of Ca2+-sequestering pools and the action of inositol 1,4,5-triphosphate.
    Prentki M; Wollheim CB; Lew PD
    J Biol Chem; 1984 Nov; 259(22):13777-82. PubMed ID: 6334080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ca2+ uptake and IP3-induced Ca2+ release in permeabilized human lymphocytes.
    Eberl G; Schnell K
    FEBS Lett; 1987 Oct; 222(2):349-52. PubMed ID: 3498653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increase in Ca2+ permeability of intracellular Ca2+ store membrane of saponin-treated guinea pig peritoneal macrophages by inositol 1,4,5-trisphosphate.
    Hirata M; Kukita M; Sasaguri T; Suematsu E; Hashimoto T; Koga T
    J Biochem; 1985 Jun; 97(6):1575-82. PubMed ID: 3875610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Size of the inositol 1,4,5-trisphosphate-sensitive calcium pool in guinea-pig hepatocytes.
    Taylor CW; Putney JW
    Biochem J; 1985 Dec; 232(2):435-8. PubMed ID: 3879172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of inositol 1,4,5-trisphosphate and guanine nucleotides on intracellular calcium release within the N1E-115 neuronal cell line.
    Ueda T; Chueh SH; Noel MW; Gill DL
    J Biol Chem; 1986 Mar; 261(7):3184-92. PubMed ID: 3081502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. H+-dependent calcium uptake into an IP3-sensitive calcium pool from rat parotid gland.
    Thévenod F; Schulz I
    Am J Physiol; 1988 Oct; 255(4 Pt 1):G429-40. PubMed ID: 3263053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Actions of inositol phosphates on Ca2+ pools in guinea-pig hepatocytes.
    Burgess GM; Irvine RF; Berridge MJ; McKinney JS; Putney JW
    Biochem J; 1984 Dec; 224(3):741-6. PubMed ID: 6525174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stimulatory effect of glucose 6-phosphate on the non-mitochondrial Ca2+ uptake in permeabilized hepatocytes and Ca2+ release by inositol trisphosphate.
    Benedetti A; Fulceri R; Romani A; Comporti M
    Biochim Biophys Acta; 1987 May; 928(3):282-6. PubMed ID: 3032281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium uptake by intracellular compartments in permeabilised enterocytes. Effect of inositol 1,4,5 trisphosphate.
    Velasco G; Shears SB; Michell RH; Lazo PS
    Biochem Biophys Res Commun; 1986 Sep; 139(2):612-8. PubMed ID: 3021134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roles of Ca2+ on the inositol 1,4,5-trisphosphate-induced release of Ca2+ from saponin-permeabilized single cells of the porcine coronary artery.
    Suematsu E; Hirata M; Sasaguri T; Hashimoto T; Kuriyama H
    Comp Biochem Physiol A Comp Physiol; 1985; 82(3):645-9. PubMed ID: 2866887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of intracellular Ca2+ in the parathyroid cell. Release of Ca2+ from non-mitochondrial pools by inositol trisphosphate.
    Epstein PA; Prentki M; Attie MF
    FEBS Lett; 1985 Aug; 188(1):141-4. PubMed ID: 3874790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inositol 1,4,5-trisphosphate and the endoplasmic reticulum Ca2+ cycle of a rat insulinoma cell line.
    Prentki M; Corkey BE; Matschinsky FM
    J Biol Chem; 1985 Aug; 260(16):9185-90. PubMed ID: 2991236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Possible physiological role of guanosine triphosphate and inositol 1,4,5-trisphosphate in Ca2+ release in macrophages stimulated with chemotactic peptide.
    Kimura Y; Hirata M; Hamachi T; Koga T
    Biochem J; 1988 Jan; 249(2):531-6. PubMed ID: 3257693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of inositol 1,4,5-trisphosphate-sensitive (IsCaP) and -insensitive (IisCaP) nonmitochondrial Ca2+ pools in rat pancreatic acinar cells.
    Thévenod F; Dehlinger-Kremer M; Kemmer TP; Christian AL; Potter BV; Schulz I
    J Membr Biol; 1989 Jul; 109(2):173-86. PubMed ID: 2527996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium release from porcine thyroid microsomes by phosphatidylinositol 4,5-bisphosphate and inositol 1,4,5-trisphosphate.
    Nakamura Y; Ohtaki S
    Endocrinology; 1987 Jun; 120(6):2302-7. PubMed ID: 3032583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of cytosolic free calcium by intracellular organelles in bovine adrenal glomerulosa cells. Effects of sodium and inositol 1,4,5-trisphosphate.
    Rossier MF; Krause KH; Lew PD; Capponi AM; Vallotton MB
    J Biol Chem; 1987 Mar; 262(9):4053-8. PubMed ID: 2435728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. myo-Inositol 1,4,5-trisphosphate mobilizes Ca2+ from isolated adipocyte endoplasmic reticulum but not from plasma membranes.
    Delfert DM; Hill S; Pershadsingh HA; Sherman WR; McDonald JM
    Biochem J; 1986 May; 236(1):37-44. PubMed ID: 2947569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.