BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 34970122)

  • 1. Effects of Simulated Microgravity and Hypergravity Conditions on Arm Movements in Normogravity.
    Jamšek M; Kunavar T; Blohm G; Nozaki D; Papaxanthis C; White O; Babič J
    Front Neural Circuits; 2021; 15():750176. PubMed ID: 34970122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Local Gravity Compensation on Motor Control During Altered Environmental Gravity.
    Kunavar T; Jamšek M; Barbiero M; Blohm G; Nozaki D; Papaxanthis C; White O; Babič J
    Front Neural Circuits; 2021; 15():750267. PubMed ID: 34744639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shift in arm-pointing movements during gravity changes produced by aircraft parabolic flight.
    Chen Y; Mori S; Koga K; Ohta Y; Wada Y; Tanaka M
    Biol Sci Space; 1999 Jun; 13(2):77-81. PubMed ID: 11542494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of gravity-like torque on goal-directed arm movements in microgravity.
    Bringoux L; Blouin J; Coyle T; Ruget H; Mouchnino L
    J Neurophysiol; 2012 May; 107(9):2541-8. PubMed ID: 22298835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The brain in micro- and hypergravity: the effects of changing gravity on the brain electrocortical activity.
    Marušič U; Meeusen R; Pišot R; Kavcic V
    Eur J Sport Sci; 2014; 14(8):813-22. PubMed ID: 24734884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical cardiopulmonary resuscitation in microgravity and hypergravity conditions: A manikin study during parabolic flight.
    Forti A; van Veelen MJ; Scquizzato T; Dal Cappello T; Palma M; Strapazzon G
    Am J Emerg Med; 2022 Mar; 53():54-58. PubMed ID: 34979409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensorimotor Reorganizations of Arm Kinematics and Postural Strategy for Functional Whole-Body Reaching Movements in Microgravity.
    Macaluso T; Bourdin C; Buloup F; Mille ML; Sainton P; Sarlegna FR; Vercher JL; Bringoux L
    Front Physiol; 2017; 8():821. PubMed ID: 29104544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antibody binding in altered gravity: implications for immunosorbent assay during space flight.
    Maule J; Fogel M; Steele A; Wainwright N; Pierson DL; McKay DS
    J Gravit Physiol; 2003 Dec; 10(2):47-55. PubMed ID: 15838989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Moving weightless objects. Grip force control during microgravity.
    Hermsdörfer J; Marquardt C; Philipp J; Zierdt A; Nowak D; Glasauer S; Mai N
    Exp Brain Res; 2000 May; 132(1):52-64. PubMed ID: 10836635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Double-Step Paradigm in Microgravity: Preservation of Sensorimotor Flexibility in Altered Gravitational Force Field.
    Bringoux L; Macaluso T; Sainton P; Chomienne L; Buloup F; Mouchnino L; Simoneau M; Blouin J
    Front Physiol; 2020; 11():377. PubMed ID: 32390872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of the vestibular system in the arterial pressure response to parabolic-flight-induced gravitational changes in human subjects.
    Iwata C; Abe C; Tanaka K; Morita H
    Neurosci Lett; 2011 May; 495(2):121-5. PubMed ID: 21440600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parabolic, Flight-Induced, Acute Hypergravity and Microgravity Effects on the Beating Rate of Human Cardiomyocytes.
    Acharya A; Brungs S; Lichterfeld Y; Hescheler J; Hemmersbach R; Boeuf H; Sachinidis A
    Cells; 2019 Apr; 8(4):. PubMed ID: 31013958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensorimotor adaptation of point-to-point arm movements after spaceflight: the role of internal representation of gravity force in trajectory planning.
    Gaveau J; Paizis C; Berret B; Pozzo T; Papaxanthis C
    J Neurophysiol; 2011 Aug; 106(2):620-9. PubMed ID: 21562193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of Differentiation Processes in Murine Embryonic Stem Cells Exposed to Parabolic Flight-Induced Acute Hypergravity and Microgravity.
    Acharya A; Brungs S; Henry M; Rotshteyn T; Singh Yaduvanshi N; Wegener L; Jentzsch S; Hescheler J; Hemmersbach R; Boeuf H; Sachinidis A
    Stem Cells Dev; 2018 Jun; 27(12):838-847. PubMed ID: 29630478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinematic and dynamic processes for the control of pointing movements in humans revealed by short-term exposure to microgravity.
    Papaxanthis C; Pozzo T; McIntyre J
    Neuroscience; 2005; 135(2):371-83. PubMed ID: 16125854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid coupling between gravitational forces and the transcriptome in human myelomonocytic U937 cells.
    Thiel CS; Tauber S; Christoffel S; Huge A; Lauber BA; Polzer J; Paulsen K; Lier H; Engelmann F; Schmitz B; Schütte A; Raig C; Layer LE; Ullrich O
    Sci Rep; 2018 Sep; 8(1):13267. PubMed ID: 30185876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial Updating Depends on Gravity.
    Stahn AC; Riemer M; Wolbers T; Werner A; Brauns K; Besnard S; Denise P; Kühn S; Gunga HC
    Front Neural Circuits; 2020; 14():20. PubMed ID: 32581724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct adaptation patterns between grip dynamics and arm kinematics when the body is upside-down.
    Opsomer L; Crevecoeur F; Thonnard JL; McIntyre J; Lefèvre P
    J Neurophysiol; 2021 Mar; 125(3):862-874. PubMed ID: 33656927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal integration of gravity in trajectory planning of vertical pointing movements.
    Crevecoeur F; Thonnard JL; Lefèvre P
    J Neurophysiol; 2009 Aug; 102(2):786-96. PubMed ID: 19458149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of changing gravity on anticipatory grip force control during point-to-point movements of a hand-held object.
    Nowak DA; Hermsdörfer J; Philipp J; Marquardt C; Glasauer S; Mai N
    Motor Control; 2001 Jul; 5(3):231-53. PubMed ID: 11438763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.