These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 34970133)

  • 1. Tunable Neural Encoding of a Symbolic Robotic Manipulation Algorithm.
    Katz GE; Akshay ; Davis GP; Gentili RJ; Reggia JA
    Front Neurorobot; 2021; 15():744031. PubMed ID: 34970133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A programmable neural virtual machine based on a fast store-erase learning rule.
    Katz GE; Davis GP; Gentili RJ; Reggia JA
    Neural Netw; 2019 Nov; 119():10-30. PubMed ID: 31376635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TinyNS: Platform-Aware Neurosymbolic Auto Tiny Machine Learning.
    Saha SS; Sandha SS; Aggarwal M; Wang B; Han L; DE Gortari Briseno J; Srivastava M
    ACM Trans Embed Comput Syst; 2024 May; 23(3):. PubMed ID: 38933471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NeuroLISP: High-level symbolic programming with attractor neural networks.
    Davis GP; Katz GE; Gentili RJ; Reggia JA
    Neural Netw; 2022 Feb; 146():200-219. PubMed ID: 34894482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering neural systems for high-level problem solving.
    Sylvester J; Reggia J
    Neural Netw; 2016 Jul; 79():37-52. PubMed ID: 27101230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An adaptive PID like controller using mix locally recurrent neural network for robotic manipulator with variable payload.
    Sharma R; Kumar V; Gaur P; Mittal AP
    ISA Trans; 2016 May; 62():258-67. PubMed ID: 26920088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hierarchical Reinforcement Learning With Universal Policies for Multistep Robotic Manipulation.
    Yang X; Ji Z; Wu J; Lai YK; Wei C; Liu G; Setchi R
    IEEE Trans Neural Netw Learn Syst; 2022 Sep; 33(9):4727-4741. PubMed ID: 33646961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bridging Locomotion and Manipulation Using Reconfigurable Robotic Limbs via Reinforcement Learning.
    Sun H; Yang L; Gu Y; Pan J; Wan F; Song C
    Biomimetics (Basel); 2023 Aug; 8(4):. PubMed ID: 37622969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intelligent Spacecraft Visual GNC Architecture With the State-Of-the-Art AI Components for On-Orbit Manipulation.
    Hao Z; Shyam RBA; Rathinam A; Gao Y
    Front Robot AI; 2021; 8():639327. PubMed ID: 34141728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reinforcement Learning Tracking Control for Robotic Manipulator With Kernel-Based Dynamic Model.
    Hu Y; Wang W; Liu H; Liu L
    IEEE Trans Neural Netw Learn Syst; 2020 Sep; 31(9):3570-3578. PubMed ID: 31689218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cascade ARTMAP: integrating neural computation and symbolic knowledge processing.
    Tan AH
    IEEE Trans Neural Netw; 1997; 8(2):237-50. PubMed ID: 18255628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Data-Driven Non-Linear Current Controller Based on Deep Symbolic Regression for SPMSM.
    Usama M; Lee IY
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Explainable AI and Reinforcement Learning-A Systematic Review of Current Approaches and Trends.
    Wells L; Bednarz T
    Front Artif Intell; 2021; 4():550030. PubMed ID: 34095817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A modular architecture for transparent computation in recurrent neural networks.
    Carmantini GS; Beim Graben P; Desroches M; Rodrigues S
    Neural Netw; 2017 Jan; 85():85-105. PubMed ID: 27814468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From Semantics to Execution: Integrating Action Planning With Reinforcement Learning for Robotic Causal Problem-Solving.
    Eppe M; Nguyen PDH; Wermter S
    Front Robot AI; 2019; 6():123. PubMed ID: 33501138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining Evolutionary and Adaptive Control Strategies for Quadruped Robotic Locomotion.
    Massi E; Vannucci L; Albanese U; Capolei MC; Vandesompele A; Urbain G; Sabatini AM; Dambre J; Laschi C; Tolu S; Falotico E
    Front Neurorobot; 2019; 13():71. PubMed ID: 31555118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy-efficient and damage-recovery slithering gait design for a snake-like robot based on reinforcement learning and inverse reinforcement learning.
    Bing Z; Lemke C; Cheng L; Huang K; Knoll A
    Neural Netw; 2020 Sep; 129():323-333. PubMed ID: 32593929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A connectionist computational model for epistemic and temporal reasoning.
    d'Avila Garcez AS; Lamb LC
    Neural Comput; 2006 Jul; 18(7):1711-38. PubMed ID: 16764519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fuzzy controller with supervised learning assisted reinforcement learning algorithm for obstacle avoidance.
    Ye C; Yung NC; Wang D
    IEEE Trans Syst Man Cybern B Cybern; 2003; 33(1):17-27. PubMed ID: 18238153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a Robotic Catheter Manipulation System Based on BP Neural Network PID Controller.
    Ma X; Zhou J; Zhang X; Zhou Q
    Appl Bionics Biomech; 2020; 2020():8870106. PubMed ID: 33425007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.