These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 34970291)

  • 21. Evaluation of field resistance to Striga hermonthica (Del.) Benth. in Sorghum bicolor (L.) Moench. The relationship with strigolactones.
    Mohemed N; Charnikhova T; Bakker EJ; van Ast A; Babiker AG; Bouwmeester HJ
    Pest Manag Sci; 2016 Nov; 72(11):2082-2090. PubMed ID: 27611187
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of a Prunus MAX1 homolog as a unique strigol synthase.
    Wu S; Zhou A; Hiugano K; Yoda A; Xie X; Yamane K; Miura K; Nomura T; Li Y
    New Phytol; 2023 Sep; 239(5):1819-1833. PubMed ID: 37292030
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Carlactone is an endogenous biosynthetic precursor for strigolactones.
    Seto Y; Sado A; Asami K; Hanada A; Umehara M; Akiyama K; Yamaguchi S
    Proc Natl Acad Sci U S A; 2014 Jan; 111(4):1640-5. PubMed ID: 24434551
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Direct conversion of carlactonoic acid to orobanchol by cytochrome P450 CYP722C in strigolactone biosynthesis.
    Wakabayashi T; Hamana M; Mori A; Akiyama R; Ueno K; Osakabe K; Osakabe Y; Suzuki H; Takikawa H; Mizutani M; Sugimoto Y
    Sci Adv; 2019 Dec; 5(12):eaax9067. PubMed ID: 32064317
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nutritional and tissue-specific regulation of cytochrome P450 CYP711A MAX1 homologues and strigolactone biosynthesis in wheat.
    Sigalas PP; Buchner P; Thomas SG; Jamois F; Arkoun M; Yvin JC; Bennett MJ; Hawkesford MJ
    J Exp Bot; 2023 Mar; 74(6):1890-1910. PubMed ID: 36626359
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis.
    Zhang Y; van Dijk AD; Scaffidi A; Flematti GR; Hofmann M; Charnikhova T; Verstappen F; Hepworth J; van der Krol S; Leyser O; Smith SM; Zwanenburg B; Al-Babili S; Ruyter-Spira C; Bouwmeester HJ
    Nat Chem Biol; 2014 Dec; 10(12):1028-33. PubMed ID: 25344813
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stereospecificity in strigolactone biosynthesis and perception.
    Flematti GR; Scaffidi A; Waters MT; Smith SM
    Planta; 2016 Jun; 243(6):1361-73. PubMed ID: 27105887
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regioselective and stereospecific hydroxylation of GR24 by Sorghum bicolor and evaluation of germination inducing activities of hydroxylated GR24 stereoisomers toward seeds of Striga species.
    Ueno K; Ishiwa S; Nakashima H; Mizutani M; Takikawa H; Sugimoto Y
    Bioorg Med Chem; 2015 Sep; 23(18):6100-10. PubMed ID: 26320663
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydroxyl carlactone derivatives are predominant strigolactones in
    Yoneyama K; Akiyama K; Brewer PB; Mori N; Kawano-Kawada M; Haruta S; Nishiwaki H; Yamauchi S; Xie X; Umehara M; Beveridge CA; Yoneyama K; Nomura T
    Plant Direct; 2020 May; 4(5):e00219. PubMed ID: 32399509
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Parasitic weed management by using strigolactone-degrading fungi.
    Boari A; Ciasca B; Pineda-Martos R; Lattanzio VM; Yoneyama K; Vurro M
    Pest Manag Sci; 2016 Nov; 72(11):2043-2047. PubMed ID: 26757233
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genomics of sorghum local adaptation to a parasitic plant.
    Bellis ES; Kelly EA; Lorts CM; Gao H; DeLeo VL; Rouhan G; Budden A; Bhaskara GB; Hu Z; Muscarella R; Timko MP; Nebie B; Runo SM; Chilcoat ND; Juenger TE; Morris GP; dePamphilis CW; Lasky JR
    Proc Natl Acad Sci U S A; 2020 Feb; 117(8):4243-4251. PubMed ID: 32047036
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Insights into stereoselective ring formation in canonical strigolactone: Identification of a dirigent domain-containing enzyme catalyzing orobanchol synthesis.
    Homma M; Wakabayashi T; Moriwaki Y; Shiotani N; Shigeta T; Isobe K; Okazawa A; Ohta D; Terada T; Shimizu K; Mizutani M; Takikawa H; Sugimoto Y
    Proc Natl Acad Sci U S A; 2024 Jun; 121(26):e2313683121. PubMed ID: 38905237
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites.
    Yoneyama K; Xie X; Kusumoto D; Sekimoto H; Sugimoto Y; Takeuchi Y; Yoneyama K
    Planta; 2007 Dec; 227(1):125-32. PubMed ID: 17684758
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Production and stably maintenance of strigolactone by transient expression of biosynthetic enzymes in
    Yata A; Nosaki S; Yoda A; Nomura T; Miura K
    Front Plant Sci; 2022; 13():1027004. PubMed ID: 36388605
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural requirements of strigolactones for germination induction and inhibition of Striga gesnerioides seeds.
    Nomura S; Nakashima H; Mizutani M; Takikawa H; Sugimoto Y
    Plant Cell Rep; 2013 Jun; 32(6):829-38. PubMed ID: 23563521
    [TBL] [Abstract][Full Text] [Related]  

  • 36. LATERAL BRANCHING OXIDOREDUCTASE acts in the final stages of strigolactone biosynthesis in Arabidopsis.
    Brewer PB; Yoneyama K; Filardo F; Meyers E; Scaffidi A; Frickey T; Akiyama K; Seto Y; Dun EA; Cremer JE; Kerr SC; Waters MT; Flematti GR; Mason MG; Weiller G; Yamaguchi S; Nomura T; Smith SM; Yoneyama K; Beveridge CA
    Proc Natl Acad Sci U S A; 2016 May; 113(22):6301-6. PubMed ID: 27194725
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A New Series of Carlactonoic Acid Based Strigolactone Analogs for Fundamental and Applied Research.
    Jamil M; Kountche BA; Wang JY; Haider I; Jia KP; Takahashi I; Ota T; Asami T; Al-Babili S
    Front Plant Sci; 2020; 11():434. PubMed ID: 32373143
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis.
    Kohlen W; Charnikhova T; Liu Q; Bours R; Domagalska MA; Beguerie S; Verstappen F; Leyser O; Bouwmeester H; Ruyter-Spira C
    Plant Physiol; 2011 Feb; 155(2):974-87. PubMed ID: 21119045
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The tomato cytochrome P450 CYP712G1 catalyses the double oxidation of orobanchol en route to the rhizosphere signalling strigolactone, solanacol.
    Wang Y; Durairaj J; Suárez Duran HG; van Velzen R; Flokova K; Liao CY; Chojnacka A; MacFarlane S; Schranz ME; Medema MH; van Dijk ADJ; Dong L; Bouwmeester HJ
    New Phytol; 2022 Sep; 235(5):1884-1899. PubMed ID: 35612785
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Specific methylation of (11R)-carlactonoic acid by an Arabidopsis SABATH methyltransferase.
    Wakabayashi T; Yasuhara R; Miura K; Takikawa H; Mizutani M; Sugimoto Y
    Planta; 2021 Sep; 254(5):88. PubMed ID: 34586497
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.