BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 3497120)

  • 1. Xeroderma pigmentosum variant cells are not defective in the repair of (6-4) photoproducts.
    Mitchell DL; Haipek CA; Clarkson JM
    Int J Radiat Biol Relat Stud Phys Chem Med; 1987 Aug; 52(2):201-5. PubMed ID: 3497120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for defective repair of cyclobutane pyrimidine dimers with normal repair of other DNA photoproducts in a transcriptionally active gene transfected into Cockayne syndrome cells.
    Barrett SF; Robbins JH; Tarone RE; Kraemer KH
    Mutat Res; 1991 Nov; 255(3):281-91. PubMed ID: 1719400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Repair of UV-endonuclease-susceptible sites in the 7 complementation groups of xeroderma pigmentosum A through G.
    Zelle B; Lohman PH
    Mutat Res; 1979 Sep; 62(2):363-8. PubMed ID: 503100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A newly identified patient with clinical xeroderma pigmentosum phenotype has a non-sense mutation in the DDB2 gene and incomplete repair in (6-4) photoproducts.
    Itoh T; Mori T; Ohkubo H; Yamaizumi M
    J Invest Dermatol; 1999 Aug; 113(2):251-7. PubMed ID: 10469312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correction of excision repair in xeroderma pigmentosum by hamster chromosome fragments involves both classes of pyrimidine dimers.
    Karentz D; Mitchell D; Cleaver JE
    Somat Cell Mol Genet; 1987 Nov; 13(6):621-5. PubMed ID: 3478816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Respective roles of cyclobutane pyrimidine dimers, (6-4)photoproducts, and minor photoproducts in ultraviolet mutagenesis of repair-deficient xeroderma pigmentosum A cells.
    Otoshi E; Yagi T; Mori T; Matsunaga T; Nikaido O; Kim ST; Hitomi K; Ikenaga M; Todo T
    Cancer Res; 2000 Mar; 60(6):1729-35. PubMed ID: 10749146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA damage and repair in normal, xeroderma pigmentosum and XP revertant cells analyzed by gel electrophoresis: excision of cyclobutane dimers from the whole genome is not necessary for cell survival.
    Cleaver JE
    Carcinogenesis; 1989 Sep; 10(9):1691-6. PubMed ID: 2766460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repair of thymine dimers and (6-4) photoproducts in group A xeroderma pigmentosum cell lines harboring a transferred normal chromosome 9.
    Ishizaki K; Matsunaga T; Kato M; Nikaido O; Ikenaga M
    Photochem Photobiol; 1992 Sep; 56(3):365-9. PubMed ID: 1438571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultraviolet-sensitive syndrome cells are defective in transcription-coupled repair of cyclobutane pyrimidine dimers.
    Spivak G; Itoh T; Matsunaga T; Nikaido O; Hanawalt P; Yamaizumi M
    DNA Repair (Amst); 2002 Aug; 1(8):629-43. PubMed ID: 12509286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Repair of 254 nm ultraviolet-induced (6-4) photoproducts: monoclonal antibody recognition and differential defects in xeroderma pigmentosum complementation groups A, D, and variant.
    Hiramoto T; Matsunaga T; Ichihashi M; Nikaido O; Fujiwara Y; Mishima Y
    J Invest Dermatol; 1989 Nov; 93(5):703-6. PubMed ID: 2794553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different removal of ultraviolet photoproducts in genetically related xeroderma pigmentosum and trichothiodystrophy diseases.
    Eveno E; Bourre F; Quilliet X; Chevallier-Lagente O; Roza L; Eker AP; Kleijer WJ; Nikaido O; Stefanini M; Hoeijmakers JH
    Cancer Res; 1995 Oct; 55(19):4325-32. PubMed ID: 7671243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. (6-4)Photoproducts are removed from the DNA of UV-irradiated mammalian cells more efficiently than cyclobutane pyrimidine dimers.
    Mitchell DL; Haipek CA; Clarkson JM
    Mutat Res; 1985 Jul; 143(3):109-12. PubMed ID: 4010689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. APE1-dependent base excision repair of DNA photodimers in human cells.
    Gautam A; Fawcett H; Burdova K; Brazina J; Caldecott KW
    Mol Cell; 2023 Oct; 83(20):3669-3678.e7. PubMed ID: 37816354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid repair kinetics of pyrimidine(6-4)pyrimidone photoproducts in human cells are due to excision rather than conformational change.
    Mitchell DL; Brash DE; Nairn RS
    Nucleic Acids Res; 1990 Feb; 18(4):963-71. PubMed ID: 2315046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcription-coupled repair removes both cyclobutane pyrimidine dimers and 6-4 photoproducts with equal efficiency and in a sequential way from transcribed DNA in xeroderma pigmentosum group C fibroblasts.
    van Hoffen A; Venema J; Meschini R; van Zeeland AA; Mullenders LH
    EMBO J; 1995 Jan; 14(2):360-7. PubMed ID: 7835346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Xeroderma pigmentosum: recent studies on the DNA repair defects.
    Friedberg EC
    Arch Pathol Lab Med; 1978 Jan; 102(1):3-7. PubMed ID: 339872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Xeroderma pigmentosum complementation group E and UV-damaged DNA-binding protein.
    Tang J; Chu G
    DNA Repair (Amst); 2002 Aug; 1(8):601-16. PubMed ID: 12509284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclobutane dimers and (6-4) photoproducts in human cells are mended with the same patch sizes.
    Cleaver JE; Jen J; Charles WC; Mitchell DL
    Photochem Photobiol; 1991 Sep; 54(3):393-402. PubMed ID: 1784640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection and repair of a UV-induced photosensitive lesion in the DNA of human cells.
    Francis AA; Regan JD
    Mutat Res; 1986 May; 165(3):151-7. PubMed ID: 3702900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unique DNA repair properties of a xeroderma pigmentosum revertant.
    Cleaver JE; Cortés F; Lutze LH; Morgan WF; Player AN; Mitchell DL
    Mol Cell Biol; 1987 Sep; 7(9):3353-7. PubMed ID: 3118197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.