These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 34971538)

  • 1. Differential Gene Expression Prediction by Ensemble Deep Networks on Histone Modification Data.
    Huang Z; Wang J; Yan Z; Wan L; Guo M
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):340-351. PubMed ID: 34971538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DeepDiff: DEEP-learning for predicting DIFFerential gene expression from histone modifications.
    Sekhon A; Singh R; Qi Y
    Bioinformatics; 2018 Sep; 34(17):i891-i900. PubMed ID: 30423076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DeepChrome: deep-learning for predicting gene expression from histone modifications.
    Singh R; Lanchantin J; Robins G; Qi Y
    Bioinformatics; 2016 Sep; 32(17):i639-i648. PubMed ID: 27587684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate and highly interpretable prediction of gene expression from histone modifications.
    Frasca F; Matteucci M; Leone M; Morelli MJ; Masseroli M
    BMC Bioinformatics; 2022 Apr; 23(1):151. PubMed ID: 35473556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differentially expressed genes prediction by multiple self-attention on epigenetics data.
    Huang Z; Wang J; Yan Z; Guo M
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35380603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancer prediction with histone modification marks using a hybrid neural network model.
    Lim A; Lim S; Kim S
    Methods; 2019 Aug; 166():48-56. PubMed ID: 30905748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting gene expression from histone modifications with self-attention based neural networks and transfer learning.
    Chen Y; Xie M; Wen J
    Front Genet; 2022; 13():1081842. PubMed ID: 36588793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. KFPredict: An ensemble learning prediction framework for diabetes based on fusion of key features.
    Qi H; Song X; Liu S; Zhang Y; Wong KKL
    Comput Methods Programs Biomed; 2023 Apr; 231():107378. PubMed ID: 36731312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Multiobjective Evolutionary Nonlinear Ensemble Learning With Evolutionary Feature Selection for Silicon Prediction in Blast Furnace.
    Wang X; Hu T; Tang L
    IEEE Trans Neural Netw Learn Syst; 2022 May; 33(5):2080-2093. PubMed ID: 33661737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Opening up the blackbox: an interpretable deep neural network-based classifier for cell-type specific enhancer predictions.
    Kim SG; Theera-Ampornpunt N; Fang CH; Harwani M; Grama A; Chaterji S
    BMC Syst Biol; 2016 Aug; 10 Suppl 2(Suppl 2):54. PubMed ID: 27490187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A deep learning-based multi-model ensemble method for cancer prediction.
    Xiao Y; Wu J; Lin Z; Zhao X
    Comput Methods Programs Biomed; 2018 Jan; 153():1-9. PubMed ID: 29157442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DCSE:Double-Channel-Siamese-Ensemble model for protein protein interaction prediction.
    Chen W; Wang S; Song T; Li X; Han P; Gao C
    BMC Genomics; 2022 Aug; 23(1):555. PubMed ID: 35922751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep Ensemble Feature Network for Gastric Section Classification.
    Lin TH; Jhang JY; Huang CR; Tsai YC; Cheng HC; Sheu BS
    IEEE J Biomed Health Inform; 2021 Jan; 25(1):77-87. PubMed ID: 32750926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving Individual Brain Age Prediction Using an Ensemble Deep Learning Framework.
    Kuo CY; Tai TM; Lee PL; Tseng CW; Chen CY; Chen LK; Lee CK; Chou KH; See S; Lin CP
    Front Psychiatry; 2021; 12():626677. PubMed ID: 33833699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DeepHistone: a deep learning approach to predicting histone modifications.
    Yin Q; Wu M; Liu Q; Lv H; Jiang R
    BMC Genomics; 2019 Apr; 20(Suppl 2):193. PubMed ID: 30967126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Network-based drug sensitivity prediction.
    Ahmed KT; Park S; Jiang Q; Yeu Y; Hwang T; Zhang W
    BMC Med Genomics; 2020 Dec; 13(Suppl 11):193. PubMed ID: 33371891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TransPhos: A Deep-Learning Model for General Phosphorylation Site Prediction Based on Transformer-Encoder Architecture.
    Wang X; Zhang Z; Zhang C; Meng X; Shi X; Qu P
    Int J Mol Sci; 2022 Apr; 23(8):. PubMed ID: 35457080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and expression analysis of histone modification gene (HM) family during somatic embryogenesis of oil palm.
    Zhou L; Yarra R; Jin L; Yang Y; Cao H; Zhao Z
    BMC Genomics; 2022 Jan; 23(1):11. PubMed ID: 34983381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A real-time computer-aided diagnosis method for hydatidiform mole recognition using deep neural network.
    Zhu C; Hu P; Wang X; Zeng X; Shi L
    Comput Methods Programs Biomed; 2023 Jun; 234():107510. PubMed ID: 37003042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A hybrid deep learning framework for gene regulatory network inference from single-cell transcriptomic data.
    Zhao M; He W; Tang J; Zou Q; Guo F
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35062026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.