BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 34971954)

  • 1. ROS-scavenging-associated transcriptional and biochemical shifts during nectarine fruit development and ripening.
    Vall-Llaura N; Fernández-Cancelo P; Nativitas-Lima I; Echeverria G; Teixidó N; Larrigaudière C; Torres R; Giné-Bordonaba J
    Plant Physiol Biochem; 2022 Jan; 171():38-48. PubMed ID: 34971954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential role of reactive oxygen species and antioxidant genes in the regulation of peach fruit development and ripening.
    Huan C; Jiang L; An X; Yu M; Xu Y; Ma R; Yu Z
    Plant Physiol Biochem; 2016 Jul; 104():294-303. PubMed ID: 27208820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antioxidant and enzymatic responses to oxidative stress induced by cold temperature storage and ripening in mango (Mangifera indica L. cv. 'Cogshall') in relation to carotenoid content.
    Rosalie R; Léchaudel M; Dhuique-Mayer C; Dufossé L; Joas J
    J Plant Physiol; 2018; 224-225():75-85. PubMed ID: 29605751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of chlorogenic acid on capacity of free radicals scavenging and proteomic changes in postharvest fruit of nectarine.
    Xi Y; Jiao W; Cao J; Jiang W
    PLoS One; 2017; 12(8):e0182494. PubMed ID: 28771559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of reactive oxygen species metabolism during grape berry development between 'Kyoho' and its early ripening bud mutant 'Fengzao'.
    Xi FF; Guo LL; Yu YH; Wang Y; Li Q; Zhao HL; Zhang GH; Guo DL
    Plant Physiol Biochem; 2017 Sep; 118():634-642. PubMed ID: 28806719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antioxidant and enzymatic responses to oxidative stress induced by pre-harvest water supply reduction and ripening on mango (Mangifera indica L. cv. 'Cogshall') in relation to carotenoid content.
    Rosalie R; Joas J; Deytieux-Belleau C; Vulcain E; Payet B; Dufossé L; Léchaudel M
    J Plant Physiol; 2015 Jul; 184():68-78. PubMed ID: 26232564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The onset of grapevine berry ripening is characterized by ROS accumulation and lipoxygenase-mediated membrane peroxidation in the skin.
    Pilati S; Brazzale D; Guella G; Milli A; Ruberti C; Biasioli F; Zottini M; Moser C
    BMC Plant Biol; 2014 Apr; 14():87. PubMed ID: 24693871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genotypic and environmental effects on the level of ascorbic acid, phenolic compounds and related gene expression during pineapple fruit development and ripening.
    Léchaudel M; Darnaudery M; Joët T; Fournier P; Joas J
    Plant Physiol Biochem; 2018 Sep; 130():127-138. PubMed ID: 29982169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptome analysis of acerola fruit ripening: insights into ascorbate, ethylene, respiration, and softening metabolisms.
    Dos Santos CP; Batista MC; da Cruz Saraiva KD; Roque ALM; de Souza Miranda R; Alexandre E Silva LM; Moura CFH; Alves Filho EG; Canuto KM; Costa JH
    Plant Mol Biol; 2019 Oct; 101(3):269-296. PubMed ID: 31338671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comprehensive study on the main physiological and biochemical changes occurring during growth and on-tree ripening of two apple varieties with different postharvest behaviour.
    Giné-Bordonaba J; Echeverria G; Duaigües E; Bobo G; Larrigaudière C
    Plant Physiol Biochem; 2019 Feb; 135():601-610. PubMed ID: 30442442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and characterization of ethylene response factor family genes during development, ethylene regulation and stress treatments in papaya fruit.
    Li X; Zhu X; Mao J; Zou Y; Fu D; Chen W; Lu W
    Plant Physiol Biochem; 2013 Sep; 70():81-92. PubMed ID: 23770597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carotenoid metabolism during bilberry (Vaccinium myrtillus L.) fruit development under different light conditions is regulated by biosynthesis and degradation.
    Karppinen K; Zoratti L; Sarala M; Carvalho E; Hirsimäki J; Mentula H; Martens S; Häggman H; Jaakola L
    BMC Plant Biol; 2016 Apr; 16():95. PubMed ID: 27098458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antioxidant Defenses in Plants with Attention to Prunus and Citrus spp.
    Racchi ML
    Antioxidants (Basel); 2013 Nov; 2(4):340-69. PubMed ID: 26784469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative genomics reveals candidate carotenoid pathway regulators of ripening watermelon fruit.
    Grassi S; Piro G; Lee JM; Zheng Y; Fei Z; Dalessandro G; Giovannoni JJ; Lenucci MS
    BMC Genomics; 2013 Nov; 14():781. PubMed ID: 24219562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. L2, a chloroplast metalloproteinase, regulates fruit ripening by participating in ethylene autocatalysis under the control of ethylene response factors.
    Li G; Wang J; Zhang C; Ai G; Zhang D; Wei J; Cai L; Li C; Zhu W; Larkin RM; Zhang J
    J Exp Bot; 2021 Oct; 72(20):7035-7048. PubMed ID: 34255841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and characterization of four ethylene signal transduction elements in plums (Prunus salicina L.).
    El-Sharkawy I; Kim WS; El-Kereamy A; Jayasankar S; Svircev AM; Brown DC
    J Exp Bot; 2007; 58(13):3631-43. PubMed ID: 18057041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of grape H3K4 genes and their expression profiles during grape fruit ripening and postharvest ROS treatment.
    Shang FH; Liu HN; Wan YT; Yu YH; Guo DL
    Genomics; 2021 Nov; 113(6):3793-3803. PubMed ID: 34534647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcript analyses of ethylene pathway genes during ripening of Chinese jujube fruit.
    Zhang Z; Huang J; Li X
    J Plant Physiol; 2018; 224-225():1-10. PubMed ID: 29574324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression profiling of various genes during the fruit development and ripening of mango.
    Pandit SS; Kulkarni RS; Giri AP; Köllner TG; Degenhardt J; Gershenzon J; Gupta VS
    Plant Physiol Biochem; 2010 Jun; 48(6):426-33. PubMed ID: 20363641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative Transcriptional Analysis of Loquat Fruit Identifies Major Signal Networks Involved in Fruit Development and Ripening Process.
    Song H; Zhao X; Hu W; Wang X; Shen T; Yang L
    Int J Mol Sci; 2016 Nov; 17(11):. PubMed ID: 27827928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.