These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 34971974)

  • 1. The ontogeny of efficient second-order action planning: The developing interplay of controlled and habitual processes in goal-directed actions.
    Melzel S; Paulus M
    J Exp Child Psychol; 2022 Apr; 216():105339. PubMed ID: 34971974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The development of the grasp height effect as a measure of efficient action planning in children.
    Jovanovic B; Schwarzer G
    J Exp Child Psychol; 2017 Jan; 153():74-82. PubMed ID: 27701010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Habitual and goal-directed factors in (everyday) object handling.
    Herbort O; Butz MV
    Exp Brain Res; 2011 Sep; 213(4):371-82. PubMed ID: 21748333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of grasping habits and object orientation on motor planning in children and adults.
    Jovanovic B; Schwarzer G
    Dev Psychobiol; 2017 Dec; 59(8):949-957. PubMed ID: 29071707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Habit outweighs planning in grasp selection for object manipulation.
    Herbort O; Mathew H; Kunde W
    Cogn Psychol; 2017 Feb; 92():127-140. PubMed ID: 27951435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Planning Ahead: Object-Directed Sequential Actions Decoded from Human Frontoparietal and Occipitotemporal Networks.
    Gallivan JP; Johnsrude IS; Flanagan JR
    Cereb Cortex; 2016 Feb; 26(2):708-30. PubMed ID: 25576538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Individual differences in motor planning during a multi-segment object manipulation task.
    Seegelke C; Hughes CM; Schütz C; Schack T
    Exp Brain Res; 2012 Oct; 222(1-2):125-36. PubMed ID: 22885998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human dorsomedial parieto-motor circuit specifies grasp during the planning of goal-directed hand actions.
    Vesia M; Barnett-Cowan M; Elahi B; Jegatheeswaran G; Isayama R; Neva JL; Davare M; Staines WR; Culham JC; Chen R
    Cortex; 2017 Jul; 92():175-186. PubMed ID: 28499145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Factors influencing planning of a familiar grasp to an object: what it is to pick a cup.
    Rounis E; Zhang Z; Pizzamiglio G; Duta M; Humphreys G
    Exp Brain Res; 2017 Apr; 235(4):1281-1296. PubMed ID: 28204861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors Influencing Manipulation of a Familiar Object in Patients With Limb Apraxia After Stroke.
    Pizzamiglio G; Zhang Z; Duta M; Rounis E
    Front Hum Neurosci; 2019; 13():465. PubMed ID: 32116596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anticipating future actions: Motor planning improves with age in wild bearded capuchin monkeys (Sapajus libidinosus).
    Truppa V; Sabbatini G; Izar P; Fragaszy DM; Visalberghi E
    Dev Sci; 2021 Jul; 24(4):e13077. PubMed ID: 33342007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pouring or chilling a bottle of wine: an fMRI study on the prospective planning of object-directed actions.
    van Elk M; Viswanathan S; van Schie HT; Bekkering H; Grafton ST
    Exp Brain Res; 2012 Apr; 218(2):189-200. PubMed ID: 22349497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preschool children adapt grasping movements to upcoming object manipulations: Evidence from a dial rotation task.
    Herbort O; Büschelberger J; Janczyk M
    J Exp Child Psychol; 2018 Mar; 167():62-77. PubMed ID: 29154031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coordinating Initial and Final Action Goals in Planning Grasp-to-Rotate Movements: An ERP Study.
    Yu L; Schack T; Koester D
    Neuroscience; 2021 Apr; 459():70-84. PubMed ID: 33548368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of multiple planning constraints on the development of grasp posture planning in 6- to 10-year-old children.
    Stöckel T; Hughes CM
    Dev Psychol; 2015 Sep; 51(9):1254-61. PubMed ID: 26192045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inverting the planning gradient: adjustment of grasps to late segments of multi-step object manipulations.
    Mathew H; Kunde W; Herbort O
    Exp Brain Res; 2017 May; 235(5):1397-1409. PubMed ID: 28233050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The development of tool use: Planning for end-state comfort.
    Comalli DM; Keen R; Abraham ES; Foo VJ; Lee MH; Adolph KE
    Dev Psychol; 2016 Nov; 52(11):1878-1892. PubMed ID: 27786531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anticipatory action planning increases from 3 to 10 years of age in typically developing children.
    Jongbloed-Pereboom M; Nijhuis-van der Sanden MW; Saraber-Schiphorst N; Crajé C; Steenbergen B
    J Exp Child Psychol; 2013 Feb; 114(2):295-305. PubMed ID: 23026314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motor planning and movement execution during goal-directed sequential manual movements in 6-year-old children with autism spectrum disorder: A kinematic analysis.
    Bäckström A; Johansson AM; Rudolfsson T; Rönnqvist L; von Hofsten C; Rosander K; Domellöf E
    Res Dev Disabil; 2021 Aug; 115():104014. PubMed ID: 34174471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of eye-hand coordination in typically developing children and adolescents assessed using a reach-to-grasp sequencing task.
    Niechwiej-Szwedo E; Wu S; Nouredanesh M; Tung J; Christian LW
    Hum Mov Sci; 2021 Dec; 80():102868. PubMed ID: 34509902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.