These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 34972096)

  • 41. Inclined Ultrathin Bi
    Hong C; Tao Y; Nie A; Zhang M; Wang N; Li R; Huang J; Huang Y; Ren X; Cheng Y; Liu X
    ACS Nano; 2020 Dec; 14(12):16803-16812. PubMed ID: 33206523
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Van der Waals-Interface-Dominated All-2D Electronics.
    Zhang X; Zhang Y; Yu H; Zhao H; Cao Z; Zhang Z; Zhang Y
    Adv Mater; 2023 Dec; 35(50):e2207966. PubMed ID: 36353883
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Multilayer Lateral Heterostructures of Van Der Waals Crystals with Sharp, Carrier-Transparent Interfaces.
    Sutter E; Unocic RR; Idrobo JC; Sutter P
    Adv Sci (Weinh); 2022 Jan; 9(3):e2103830. PubMed ID: 34813175
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors.
    Wang Y; Kim JC; Wu RJ; Martinez J; Song X; Yang J; Zhao F; Mkhoyan A; Jeong HY; Chhowalla M
    Nature; 2019 Apr; 568(7750):70-74. PubMed ID: 30918403
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Imaging of Interlayer Coupling in van der Waals Heterostructures Using a Bright-Field Optical Microscope.
    Alexeev EM; Catanzaro A; Skrypka OV; Nayak PK; Ahn S; Pak S; Lee J; Sohn JI; Novoselov KS; Shin HS; Tartakovskii AI
    Nano Lett; 2017 Sep; 17(9):5342-5349. PubMed ID: 28753319
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Quantitative Subsurface Atomic Structure Fingerprint for 2D Materials and Heterostructures by First-Principles-Calibrated Contact-Resonance Atomic Force Microscopy.
    Tu Q; Lange B; Parlak Z; Lopes JM; Blum V; Zauscher S
    ACS Nano; 2016 Jul; 10(7):6491-500. PubMed ID: 27263541
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Visualizing Van der Waals Epitaxial Growth of 2D Heterostructures.
    Zhang K; Ding C; Pan B; Wu Z; Marga A; Zhang L; Zeng H; Huang S
    Adv Mater; 2021 Nov; 33(45):e2105079. PubMed ID: 34541723
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Thickness-Dependence Electrical Characterization of the One-Dimensional van der Waals TaSe
    Kim BJ; Jeong BJ; Oh S; Chae S; Choi KH; Nasir T; Lee SH; Lim HK; Choi IJ; Hong MK; Yu HK; Lee JH; Choi JY
    Materials (Basel); 2019 Aug; 12(15):. PubMed ID: 31382412
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Freestanding van der Waals heterostructures of graphene and transition metal dichalcogenides.
    Azizi A; Eichfeld S; Geschwind G; Zhang K; Jiang B; Mukherjee D; Hossain L; Piasecki AF; Kabius B; Robinson JA; Alem N
    ACS Nano; 2015 May; 9(5):4882-90. PubMed ID: 25885122
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Topological Magnetic-Spin Textures in Two-Dimensional van der Waals Cr
    Han MG; Garlow JA; Liu Y; Zhang H; Li J; DiMarzio D; Knight MW; Petrovic C; Jariwala D; Zhu Y
    Nano Lett; 2019 Nov; 19(11):7859-7865. PubMed ID: 31661617
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Determination of optimum optoelectronic properties in vertically stacked MoS
    Tan S; Zhao Y; Dong J; Yang G; Ouyang G
    Phys Chem Chem Phys; 2019 Oct; 21(41):23179-23186. PubMed ID: 31612172
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Conductive Atomic Force Microscopy of Semiconducting Transition Metal Dichalcogenides and Heterostructures.
    Giannazzo F; SchilirĂ² E; Greco G; Roccaforte F
    Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32331313
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bi
    Bi Y; Yang Y; Shi XL; Feng L; Hou X; Ye X; Zhang L; Suo G; Chen J; Chen ZG
    J Colloid Interface Sci; 2021 Jul; 593():196-203. PubMed ID: 33744530
    [TBL] [Abstract][Full Text] [Related]  

  • 54. High-Frequency Elastic Coupling at the Interface of van der Waals Nanolayers Imaged by Picosecond Ultrasonics.
    Greener JDG; de Lima Savi E; Akimov AV; Raetz S; Kudrynskyi Z; Kovalyuk ZD; Chigarev N; Kent A; Patané A; Gusev V
    ACS Nano; 2019 Oct; 13(10):11530-11537. PubMed ID: 31487450
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Observing Imperfection in Atomic Interfaces for van der Waals Heterostructures.
    Rooney AP; Kozikov A; Rudenko AN; Prestat E; Hamer MJ; Withers F; Cao Y; Novoselov KS; Katsnelson MI; Gorbachev R; Haigh SJ
    Nano Lett; 2017 Sep; 17(9):5222-5228. PubMed ID: 28741958
    [TBL] [Abstract][Full Text] [Related]  

  • 56. First-principles study on the electronic structures and contact properties of graphene/XC (X = P, As, Sb, and Bi) van der Waals heterostructures.
    Hu X; Liu W; Yang J; Zhang S; Ye Y
    Phys Chem Chem Phys; 2021 Nov; 23(44):25136-25142. PubMed ID: 34729574
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Interlayer Interactions in van der Waals Heterostructures: Electron and Phonon Properties.
    Le NB; Huan TD; Woods LM
    ACS Appl Mater Interfaces; 2016 Mar; 8(9):6286-92. PubMed ID: 26885874
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Reversible Electrical Control of Interfacial Charge Flow across van der Waals Interfaces.
    Fu S; Jia X; Hassan AS; Zhang H; Zheng W; Gao L; Di Virgilio L; Krasel S; Beljonne D; Tielrooij KJ; Bonn M; Wang HI
    Nano Lett; 2023 Mar; 23(5):1850-1857. PubMed ID: 36799492
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nano-"Squeegee" for the Creation of Clean 2D Material Interfaces.
    Rosenberger MR; Chuang HJ; McCreary KM; Hanbicki AT; Sivaram SV; Jonker BT
    ACS Appl Mater Interfaces; 2018 Mar; 10(12):10379-10387. PubMed ID: 29510025
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mixed-dimensional van der Waals heterostructures.
    Jariwala D; Marks TJ; Hersam MC
    Nat Mater; 2017 Feb; 16(2):170-181. PubMed ID: 27479211
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.