These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 34972240)

  • 1. GAPDH is involved in the heme-maturation of myoglobin and hemoglobin.
    Tupta B; Stuehr E; Sumi MP; Sweeny EA; Smith B; Stuehr DJ; Ghosh A
    FASEB J; 2022 Feb; 36(2):e22099. PubMed ID: 34972240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myoglobin maturation is driven by the hsp90 chaperone machinery and by soluble guanylyl cyclase.
    Ghosh A; Dai Y; Biswas P; Stuehr DJ
    FASEB J; 2019 Sep; 33(9):9885-9896. PubMed ID: 31170354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hsp90 in Human Diseases: Molecular Mechanisms to Therapeutic Approaches.
    Sumi MP; Ghosh A
    Cells; 2022 Mar; 11(6):. PubMed ID: 35326427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hsp90 chaperones hemoglobin maturation in erythroid and nonerythroid cells.
    Ghosh A; Garee G; Sweeny EA; Nakamura Y; Stuehr DJ
    Proc Natl Acad Sci U S A; 2018 Feb; 115(6):E1117-E1126. PubMed ID: 29358373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thioredoxin-1 regulates cellular heme insertion by controlling S-nitrosation of glyceraldehyde-3-phosphate dehydrogenase.
    Chakravarti R; Stuehr DJ
    J Biol Chem; 2012 May; 287(20):16179-86. PubMed ID: 22457359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitric Oxide Trickle Drives Heme into Hemoglobin and Muscle Myoglobin.
    Sumi MP; Tupta B; Ghosh A
    Cells; 2022 Sep; 11(18):. PubMed ID: 36139413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glyceraldehyde-3-phosphate dehydrogenase is a chaperone that allocates labile heme in cells.
    Sweeny EA; Singh AB; Chakravarti R; Martinez-Guzman O; Saini A; Haque MM; Garee G; Dans PD; Hannibal L; Reddi AR; Stuehr DJ
    J Biol Chem; 2018 Sep; 293(37):14557-14568. PubMed ID: 30012884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GAPDH delivers heme to soluble guanylyl cyclase.
    Dai Y; Sweeny EA; Schlanger S; Ghosh A; Stuehr DJ
    J Biol Chem; 2020 Jun; 295(24):8145-8154. PubMed ID: 32358060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An unlikely heme chaperone confirmed at last.
    Fleischhacker AS; Ragsdale SW
    J Biol Chem; 2018 Sep; 293(37):14569-14570. PubMed ID: 30217868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GAPDH regulates cellular heme insertion into inducible nitric oxide synthase.
    Chakravarti R; Aulak KS; Fox PL; Stuehr DJ
    Proc Natl Acad Sci U S A; 2010 Oct; 107(42):18004-9. PubMed ID: 20921417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low levels of nitric oxide promotes heme maturation into several hemeproteins and is also therapeutic.
    Ghosh A; Sumi MP; Tupta B; Okamoto T; Aulak K; Tsutsui M; Shimokawa H; Erzurum SC; Stuehr DJ
    Redox Biol; 2022 Oct; 56():102478. PubMed ID: 36116161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions of Haptoglobin with Monomeric Globin Species: Insights from Molecular Modeling and Native Electrospray Ionization Mass Spectrometry.
    Fatunmbi O; Abzalimov RR; Savinov SN; Gershenson A; Kaltashov IA
    Biochemistry; 2016 Mar; 55(12):1918-28. PubMed ID: 26937685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of α-globin H helix in the building of tetrameric human hemoglobin: interaction with α-hemoglobin stabilizing protein (AHSP) and heme molecule.
    Domingues-Hamdi E; Vasseur C; Fournier JB; Marden MC; Wajcman H; Baudin-Creuza V
    PLoS One; 2014; 9(11):e111395. PubMed ID: 25369055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The D-helix in myoglobin and in the beta subunit of hemoglobin is required for the retention of heme.
    Whitaker TL; Berry MB; Ho EL; Hargrove MS; Phillips GN; Komiyama NH; Nagai K; Olson JS
    Biochemistry; 1995 Jul; 34(26):8221-6. PubMed ID: 7599114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systematic engineering of Saccharomyces cerevisiae for efficient synthesis of hemoglobins and myoglobins.
    Xue J; Zhou J; Li J; Du G; Chen J; Wang M; Zhao X
    Bioresour Technol; 2023 Feb; 370():128556. PubMed ID: 36586429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substitution of the heme binding module in hemoglobin alpha- and beta-subunits. Implication for different regulation mechanisms of the heme proximal structure between hemoglobin and myoglobin.
    Inaba K; Ishimori K; Imai K; Morishima I
    J Biol Chem; 2000 Apr; 275(17):12438-45. PubMed ID: 10777528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygen-binding heme complexes of peptides designed to mimic the heme environment of myoglobin and hemoglobin.
    Atassi MZ; Childress C
    Protein J; 2005 Jan; 24(1):37-49. PubMed ID: 15756816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional maturation of cytochromes P450 3A4 and 2D6 relies on GAPDH- and Hsp90-Dependent heme allocation.
    Islam S; Jayaram DT; Biswas P; Stuehr DJ
    J Biol Chem; 2024 Feb; 300(2):105633. PubMed ID: 38199567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional aspects of ultra-rapid heme doming in hemoglobin, myoglobin, and the myoglobin mutant H93G.
    Franzen S; Bohn B; Poyart C; DePillis G; Boxer SG; Martin JL
    J Biol Chem; 1995 Jan; 270(4):1718-20. PubMed ID: 7829506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amphitrite ornata dehaloperoxidase (DHP): investigations of structural factors that influence the mechanism of halophenol dehalogenation using "peroxidase-like" myoglobin mutants and "myoglobin-like" DHP mutants.
    Du J; Huang X; Sun S; Wang C; Lebioda L; Dawson JH
    Biochemistry; 2011 Sep; 50(38):8172-80. PubMed ID: 21800850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.