These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 34972296)

  • 1. A numerical study of the coupling between Rayleigh streaming and heat transfer at high acoustic level.
    Daru V; Weisman C; Baltean-Carlès D; Bailliet H
    J Acoust Soc Am; 2021 Dec; 150(6):4501. PubMed ID: 34972296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast acoustic streaming in standing waves: generation of an additional outer streaming cell.
    Reyt I; Daru V; Bailliet H; Moreau S; Valière JC; Baltean-Carlès D; Weisman C
    J Acoust Soc Am; 2013 Sep; 134(3):1791-801. PubMed ID: 23967913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acoustic and streaming velocity components in a resonant waveguide at high acoustic levels.
    Daru V; Reyt I; Bailliet H; Weisman C; Baltean-Carlès D
    J Acoust Soc Am; 2017 Jan; 141(1):563. PubMed ID: 28147596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental investigation of acoustic streaming in a cylindrical wave guide up to high streaming Reynolds numbers.
    Reyt I; Bailliet H; Valière JC
    J Acoust Soc Am; 2014 Jan; 135(1):27-37. PubMed ID: 24437742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Outer Acoustic Streaming Flow Driven by Asymmetric Acoustic Resonances.
    Lei J; Zheng G; Yao Z; Huang Z
    Micromachines (Basel); 2021 Dec; 13(1):. PubMed ID: 35056230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acoustic streaming induced by two orthogonal ultrasound standing waves in a microfluidic channel.
    Doinikov AA; Thibault P; Marmottant P
    Ultrasonics; 2018 Jul; 87():7-19. PubMed ID: 29428563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow induced by acoustic streaming on surface-acoustic-wave devices and its application in biofouling removal: a computational study and comparisons to experiment.
    Sankaranarayanan SK; Cular S; Bhethanabotla VR; Joseph B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066308. PubMed ID: 18643372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental and numerical investigations of resonant acoustic waves in near-critical carbon dioxide.
    Hasan N; Farouk B
    J Acoust Soc Am; 2015 Oct; 138(4):2414-25. PubMed ID: 26520322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental investigation of the influence of natural convection and end-effects on Rayleigh streaming in a thermoacoustic engine.
    Ramadan IA; Bailliet H; Valière JC
    J Acoust Soc Am; 2018 Jan; 143(1):361. PubMed ID: 29390757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acoustic streaming induced by ultrasonic flexural vibrations and associated enhancement of convective heat transfer.
    Loh BG; Hyun S; Ro PI; Kleinstreuer C
    J Acoust Soc Am; 2002 Feb; 111(2):875-83. PubMed ID: 11863189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influences of a temperature gradient and fluid inertia on acoustic streaming in a standing wave.
    Thompson MW; Atchley AA; Maccarone MJ
    J Acoust Soc Am; 2005 Apr; 117(4 Pt 1):1839-49. PubMed ID: 15898629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acoustic streaming in a microfluidic channel with a reflector: Case of a standing wave generated by two counterpropagating leaky surface waves.
    Doinikov AA; Thibault P; Marmottant P
    Phys Rev E; 2017 Jul; 96(1-1):013101. PubMed ID: 29347059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast Microscale Acoustic Streaming Driven by a Temperature-Gradient-Induced Nondissipative Acoustic Body Force.
    Qiu W; Joergensen JH; Corato E; Bruus H; Augustsson P
    Phys Rev Lett; 2021 Aug; 127(6):064501. PubMed ID: 34420350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Periodic Rayleigh streaming vortices and Eckart flow arising from traveling-wave-based diffractive acoustic fields.
    Kolesnik K; Hashemzadeh P; Peng D; Stamp MEM; Tong W; Rajagopal V; Miansari M; Collins DJ
    Phys Rev E; 2021 Oct; 104(4-2):045104. PubMed ID: 34781567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acoustic streaming of a sharp edge.
    Ovchinnikov M; Zhou J; Yalamanchili S
    J Acoust Soc Am; 2014 Jul; 136(1):22-9. PubMed ID: 24993192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature field regulation of a droplet using an acoustothermal heater.
    Li L; Wu E; Jia K; Yang K
    Lab Chip; 2021 Aug; 21(16):3184-3194. PubMed ID: 34195725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theory and simulation of electroosmotic suppression of acoustic streaming.
    Winckelmann BG; Bruus H
    J Acoust Soc Am; 2021 Jun; 149(6):3917. PubMed ID: 34241445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical study of the influence of the convective heat transport on acoustic streaming in a standing wave.
    Červenka M; Bednařík M
    J Acoust Soc Am; 2018 Feb; 143(2):727. PubMed ID: 29495724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of heat exchange and nonlinearity on acoustic streaming in a vibrating cylindrical cavity.
    Gubaidullin AA; Yakovenko AV
    J Acoust Soc Am; 2015 Jun; 137(6):3281-7. PubMed ID: 26093418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling fast acoustic streaming: Steady-state and transient flow solutions.
    Orosco J; Friend J
    Phys Rev E; 2022 Oct; 106(4-2):045101. PubMed ID: 36397528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.