These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 34972361)
1. Data-efficient iterative training of Gaussian approximation potentials: Application to surface structure determination of rutile IrO Timmermann J; Lee Y; Staacke CG; Margraf JT; Scheurer C; Reuter K J Chem Phys; 2021 Dec; 155(24):244107. PubMed ID: 34972361 [TBL] [Abstract][Full Text] [Related]
2. IrO_{2} Surface Complexions Identified through Machine Learning and Surface Investigations. Timmermann J; Kraushofer F; Resch N; Li P; Wang Y; Mao Z; Riva M; Lee Y; Staacke C; Schmid M; Scheurer C; Parkinson GS; Diebold U; Reuter K Phys Rev Lett; 2020 Nov; 125(20):206101. PubMed ID: 33258623 [TBL] [Abstract][Full Text] [Related]
3. Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions. Lee Y; Suntivich J; May KJ; Perry EE; Shao-Horn Y J Phys Chem Lett; 2012 Feb; 3(3):399-404. PubMed ID: 26285858 [TBL] [Abstract][Full Text] [Related]
4. Gaussian approximation potentials for accurate thermal properties of two-dimensional materials. Kocabaş T; Keçeli M; Vázquez-Mayagoitia Á; Sevik C Nanoscale; 2023 May; 15(19):8772-8780. PubMed ID: 37098822 [TBL] [Abstract][Full Text] [Related]
7. Stable reconstruction of the (110) surface and its role in pseudocapacitance of rutile-like RuO Zakaryan HA; Kvashnin AG; Oganov AR Sci Rep; 2017 Sep; 7(1):10357. PubMed ID: 28871095 [TBL] [Abstract][Full Text] [Related]
8. Investigation of energy band alignments and interfacial properties of rutile NMO Yang C; Zhao ZY Phys Chem Chem Phys; 2017 Nov; 19(43):29583-29593. PubMed ID: 29082994 [TBL] [Abstract][Full Text] [Related]
9. Data-efficient fine-tuning of foundational models for first-principles quality sublimation enthalpies. Kaur H; Della Pia F; Batatia I; Advincula XR; Shi BX; Lan J; Csányi G; Michaelides A; Kapil V Faraday Discuss; 2024 Sep; ():. PubMed ID: 39329168 [TBL] [Abstract][Full Text] [Related]
10. Simultaneous removal of ammonia and phosphate by electro-oxidation and electrocoagulation using RuO Sun D; Hong X; Wu K; Hui KS; Du Y; Hui KN Water Res; 2020 Feb; 169():115239. PubMed ID: 31706129 [TBL] [Abstract][Full Text] [Related]
12. Black box vs gray box: Comparing GAP and GPrep-DFTB for ruthenium and ruthenium oxide. Panosetti C; Lee Y; Samtsevych A; Scheurer C J Chem Phys; 2023 Jun; 158(22):. PubMed ID: 37306957 [TBL] [Abstract][Full Text] [Related]
13. Global analysis of energy landscapes for materials modeling: A test case for C60. Csányi G; Morgan JWR; Wales DJ J Chem Phys; 2023 Sep; 159(10):. PubMed ID: 37698195 [TBL] [Abstract][Full Text] [Related]
17. Active discovery of organic semiconductors. Kunkel C; Margraf JT; Chen K; Oberhofer H; Reuter K Nat Commun; 2021 Apr; 12(1):2422. PubMed ID: 33893287 [TBL] [Abstract][Full Text] [Related]
18. Interplay between surface chemistry and performance of rutile-type catalysts for halogen production. Moser M; Paunović V; Guo Z; Szentmiklósi L; Hevia MG; Higham M; López N; Teschner D; Pérez-Ramírez J Chem Sci; 2016 May; 7(5):2996-3005. PubMed ID: 29997788 [TBL] [Abstract][Full Text] [Related]
19. Equation of State of Fluid Methane from First Principles with Machine Learning Potentials. Veit M; Jain SK; Bonakala S; Rudra I; Hohl D; Csányi G J Chem Theory Comput; 2019 Apr; 15(4):2574-2586. PubMed ID: 30794393 [TBL] [Abstract][Full Text] [Related]
20. Accelerating Metadynamics-Based Free-Energy Calculations with Adaptive Machine Learning Potentials. Xu J; Cao XM; Hu P J Chem Theory Comput; 2021 Jul; 17(7):4465-4476. PubMed ID: 34100605 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]