These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Onset of ice VII phase of liquid water: role of filamentation in stimulated Raman scattering. Rakesh Kumar V; Prem Kiran P Opt Lett; 2015 Jun; 40(12):2802-5. PubMed ID: 26076266 [TBL] [Abstract][Full Text] [Related]
23. Selective suppression of CARS signal with two competing stimulated Raman scattering processes. Rao BJ; Choi DS; Cho M J Chem Phys; 2018 Dec; 149(23):234202. PubMed ID: 30579296 [TBL] [Abstract][Full Text] [Related]
24. Quantum theory of (femtosecond) time-resolved stimulated Raman scattering. Sun Z; Lu J; Zhang DH; Lee SY J Chem Phys; 2008 Apr; 128(14):144114. PubMed ID: 18412430 [TBL] [Abstract][Full Text] [Related]
25. Si quantum dots enhanced hydrogen bonds networks of liquid water in a stimulated Raman scattering process. Wang Y; Li F; Li Z; Sun C; Men Z Opt Lett; 2019 Jul; 44(14):3450-3453. PubMed ID: 31305545 [TBL] [Abstract][Full Text] [Related]
26. Highly efficient picosecond diamond Raman laser at 1240 and 1485 nm. Warrier AM; Lin J; Pask HM; Mildren RP; Coutts DW; Spence DJ Opt Express; 2014 Feb; 22(3):3325-33. PubMed ID: 24663623 [TBL] [Abstract][Full Text] [Related]
27. Stimulated Raman scattering of lattice translational modes in liquid heavy water. Li Z; Li Z; Zhou M; Wang Y; Men Z; Sun C Opt Lett; 2012 Apr; 37(8):1319-21. PubMed ID: 22513672 [TBL] [Abstract][Full Text] [Related]
28. Molecular orientational order probed by coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) microscopy: a spectral comparative study. Duboisset J; Berto P; Gasecka P; Bioud FZ; Ferrand P; Rigneault H; Brasselet S J Phys Chem B; 2015 Feb; 119(7):3242-9. PubMed ID: 25602288 [TBL] [Abstract][Full Text] [Related]
29. Effects of self-phase modulation (SPM) on femtosecond coherent anti-Stokes Raman scattering spectroscopy. Gu M; Satija A; Lucht RP Opt Express; 2019 Nov; 27(23):33954-33966. PubMed ID: 31878454 [TBL] [Abstract][Full Text] [Related]
30. SRS conversion efficiency assessment of a single cell Raman gas mixture for DIAL ozone lidar. Raman MR; Chen WN Appl Opt; 2024 Feb; 63(4):874-887. PubMed ID: 38437383 [TBL] [Abstract][Full Text] [Related]
31. Influence of the hydrogen bond quantum nature in liquid water and heavy water on stimulated Raman scattering. Li F; Li Z; Li S; Fang W; Sun C; Men Z Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jun; 199():462-464. PubMed ID: 29133131 [TBL] [Abstract][Full Text] [Related]
33. Temperature dependence and cross sections of some Stokes and anti-Stokes Raman lines in ice lh. Slusher RB; Derr VE Appl Opt; 1975 Sep; 14(9):2116-20. PubMed ID: 20154971 [TBL] [Abstract][Full Text] [Related]
34. Revealing silent vibration modes of nanomaterials by detecting anti-Stokes hyper-Raman scattering with femtosecond laser pulses. Zeng J; Chen L; Dai Q; Lan S; Tie S Nanoscale; 2016 Jan; 8(3):1572-9. PubMed ID: 26690965 [TBL] [Abstract][Full Text] [Related]
39. Low-Threshold Anti-Stokes Raman Microlaser on Thin-Film Lithium Niobate Chip. Guan J; Lin J; Gao R; Li C; Zhao G; Li M; Wang M; Qiao L; Cheng Y Materials (Basel); 2024 Feb; 17(5):. PubMed ID: 38473514 [TBL] [Abstract][Full Text] [Related]
40. Intermolecular energy transfer-enhanced super-broadband stimulated Raman scattering in cyclohexane-benzene mixtures. Ren P; Wang C; Yang B; Xing L; Wang S; Men Z; Sun C J Chem Phys; 2023 Feb; 158(6):064302. PubMed ID: 36792499 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]