These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 34972388)
1. Insights into lithium manganese oxide-water interfaces using machine learning potentials. Eckhoff M; Behler J J Chem Phys; 2021 Dec; 155(24):244703. PubMed ID: 34972388 [TBL] [Abstract][Full Text] [Related]
2. Predicting oxidation and spin states by high-dimensional neural networks: Applications to lithium manganese oxide spinels. Eckhoff M; Lausch KN; Blöchl PE; Behler J J Chem Phys; 2020 Oct; 153(16):164107. PubMed ID: 33138439 [TBL] [Abstract][Full Text] [Related]
3. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007). Hafner J J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862 [TBL] [Abstract][Full Text] [Related]
4. Nanosecond solvation dynamics of the hematite/liquid water interface at hybrid DFT accuracy using committee neural network potentials. Schienbein P; Blumberger J Phys Chem Chem Phys; 2022 Jun; 24(25):15365-15375. PubMed ID: 35703465 [TBL] [Abstract][Full Text] [Related]
6. DFT modelling of explicit solid-solid interfaces in batteries: methods and challenges. Leung K Phys Chem Chem Phys; 2020 May; 22(19):10412-10425. PubMed ID: 32073055 [TBL] [Abstract][Full Text] [Related]
7. Jahn-Teller Effects in a Vanadate-Stabilized Manganese-Oxo Cubane Water Oxidation Catalyst. Mai S; Holzer M; Andreeva A; González L Chemistry; 2021 Dec; 27(68):17066-17077. PubMed ID: 34643965 [TBL] [Abstract][Full Text] [Related]
8. Ionic Conduction through Reaction Products at the Electrolyte-Electrode Interface in All-Solid-State Li Wang C; Aoyagi K; Aykol M; Mueller T ACS Appl Mater Interfaces; 2020 Dec; 12(49):55510-55519. PubMed ID: 33258370 [TBL] [Abstract][Full Text] [Related]
9. Perspective: Atomistic simulations of water and aqueous systems with machine learning potentials. Omranpour A; Montero De Hijes P; Behler J; Dellago C J Chem Phys; 2024 May; 160(17):. PubMed ID: 38748006 [TBL] [Abstract][Full Text] [Related]
11. Biological water oxidation. Cox N; Pantazis DA; Neese F; Lubitz W Acc Chem Res; 2013 Jul; 46(7):1588-96. PubMed ID: 23506074 [TBL] [Abstract][Full Text] [Related]
12. Equilibria and Rate Phenomena from Atomistic to Mesoscale: Simulation Studies of Magnetite. Lininger CN; Brady NW; West AC Acc Chem Res; 2018 Mar; 51(3):583-590. PubMed ID: 29498267 [TBL] [Abstract][Full Text] [Related]
13. Projection-Based Wavefunction-in-DFT Embedding. Lee SJR; Welborn M; Manby FR; Miller TF Acc Chem Res; 2019 May; 52(5):1359-1368. PubMed ID: 30969117 [TBL] [Abstract][Full Text] [Related]
14. Machine Learning in Computational Surface Science and Catalysis: Case Studies on Water and Metal-Oxide Interfaces. Li X; Paier W; Paier J Front Chem; 2020; 8():601029. PubMed ID: 33425857 [TBL] [Abstract][Full Text] [Related]
15. First-Principles Study on the Effect of Lithiation in Spinel Li Hlungwani D; Ledwaba RS; Ngoepe PE Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013814 [TBL] [Abstract][Full Text] [Related]
16. Hybrid Quantum Mechanical, Molecular Mechanical, and Machine Learning Potential for Computing Aqueous-Phase Adsorption Free Energies on Metal Surfaces. Zare M; Sahsah D; Saleheen M; Behler J; Heyden A J Chem Theory Comput; 2024 Sep; ():. PubMed ID: 39254514 [TBL] [Abstract][Full Text] [Related]
17. Nuclear quantum effects on zeolite proton hopping kinetics explored with machine learning potentials and path integral molecular dynamics. Bocus M; Goeminne R; Lamaire A; Cools-Ceuppens M; Verstraelen T; Van Speybroeck V Nat Commun; 2023 Feb; 14(1):1008. PubMed ID: 36823162 [TBL] [Abstract][Full Text] [Related]
18. Insights into structural and dynamical features of water at halloysite interfaces probed by DFT and classical molecular dynamics simulations. Presti D; Pedone A; Mancini G; Duce C; Tiné MR; Barone V Phys Chem Chem Phys; 2016 Jan; 18(3):2164-74. PubMed ID: 26690815 [TBL] [Abstract][Full Text] [Related]
19. Comprehensive Study of Lithium Adsorption and Diffusion on Janus Mo/WXY (X, Y = S, Se, Te) Using First-Principles and Machine Learning Approaches. Chaney G; Ibrahim A; Ersan F; Çakır D; Ataca C ACS Appl Mater Interfaces; 2021 Aug; 13(30):36388-36406. PubMed ID: 34304560 [TBL] [Abstract][Full Text] [Related]
20. Cryo-STEM mapping of solid-liquid interfaces and dendrites in lithium-metal batteries. Zachman MJ; Tu Z; Choudhury S; Archer LA; Kourkoutis LF Nature; 2018 Aug; 560(7718):345-349. PubMed ID: 30111789 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]