These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 34972447)
1. Design, experiment, and performance analysis of magnetorheological clutch with uniform magnetic field distribution along the radial direction for tension control. Wang S; Chen F; Tian Z; Li A; Wu X Rev Sci Instrum; 2021 Dec; 92(12):125006. PubMed ID: 34972447 [TBL] [Abstract][Full Text] [Related]
2. A New Type of Hydraulic Clutch with Magnetorheological Fluid: Theory and Experiment. Musiałek K; Musiałek I; Osowski K; Olszak A; Mikulska A; Kęsy Z; Kęsy A; Choi SB Micromachines (Basel); 2024 Apr; 15(5):. PubMed ID: 38793145 [TBL] [Abstract][Full Text] [Related]
3. Design and Control of Multi-Plate MR Clutch Featuring Friction and Magnetic Field Control Modes. Park JY; Oh JS; Kim YC Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35270904 [TBL] [Abstract][Full Text] [Related]
4. High-performance magneto-rheological clutches for direct-drive actuation: Design and development. Pisetskiy S; Kermani M J Intell Mater Syst Struct; 2021 Dec; 32(20):2582-2600. PubMed ID: 34764629 [TBL] [Abstract][Full Text] [Related]
5. Experimental measurement of a multi-pole magnetorheological fluid clutch under air cooling. Wu J; Liu Y; Xie H Rev Sci Instrum; 2024 Mar; 95(3):. PubMed ID: 38445996 [TBL] [Abstract][Full Text] [Related]
6. Design and Control of Upper Limb Rehabilitation Training Robot Based on a Magnetorheological Joint Damper. Zhu J; Hu H; Zhao W; Yang J; Ouyang Q Micromachines (Basel); 2024 Feb; 15(3):. PubMed ID: 38542548 [TBL] [Abstract][Full Text] [Related]
7. Magnetic circuit design for the performance experiment of shear yield stress enhanced by compression of magnetorheological fluids. Bi C; Bi E; Wang H; Deng C; Chen H; Wang Y Sci Rep; 2024 Jan; 14(1):741. PubMed ID: 38185674 [TBL] [Abstract][Full Text] [Related]
8. Design optimization and experimental evaluation of a large capacity magnetorheological damper with annular and radial fluid gaps. Abdalaziz M; Sedaghati R; Vatandoost H J Intell Mater Syst Struct; 2023 Aug; 34(14):1646-1663. PubMed ID: 37521729 [TBL] [Abstract][Full Text] [Related]
9. Squeeze-Strengthening Effect of Silicone Oil-Based Magnetorheological Fluid with Nanometer Fe₃O₄ Addition in High-Torque Magnetorheological Brakes. Wang N; Liu X; Zhang X J Nanosci Nanotechnol; 2019 May; 19(5):2633-2639. PubMed ID: 30501760 [TBL] [Abstract][Full Text] [Related]
10. Magnetorheological Damper With Variable Displacement Permanent Magnet for Assisting the Transfer of Load in Lower Limb Exoskeleton. Song J; Zhu A; Tu Y; Zheng C; Cao G IEEE Trans Neural Syst Rehabil Eng; 2024; 32():43-52. PubMed ID: 38039179 [TBL] [Abstract][Full Text] [Related]
11. Searching for a Stable High-Performance Magnetorheological Suspension. Seo YP; Han S; Choi J; Takahara A; Choi HJ; Seo Y Adv Mater; 2018 Oct; 30(42):e1704769. PubMed ID: 30151957 [TBL] [Abstract][Full Text] [Related]
12. Design and Analysis of a Hybrid Annular Radial Magnetorheological Damper for Semi-Active In-Wheel Motor Suspension. Munyaneza O; Turabimana P; Oh JS; Choi SB; Sohn JW Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632098 [TBL] [Abstract][Full Text] [Related]
13. Research on a novel water-cooling multi-cylinder magnetorheological transmission device. Xiao L; Chen F; Gu X; Li A; Li H Rev Sci Instrum; 2024 Jan; 95(1):. PubMed ID: 38189651 [TBL] [Abstract][Full Text] [Related]
14. Design and development of magnetorheological fluid-based passive actuator. Shokrollahi E; Price K; Drake JM; Goldenberg AA Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():4883-6. PubMed ID: 26737387 [TBL] [Abstract][Full Text] [Related]
15. A Multi-Mode Rehabilitation Robot With Magnetorheological Actuators Based on Human Motion Intention Estimation. Xu J; Li Y; Xu L; Peng C; Chen S; Liu J; Xu C; Cheng G; Xu H; Liu Y; Chen J IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2216-2228. PubMed ID: 31443038 [TBL] [Abstract][Full Text] [Related]
16. Quasi-Static Modelling of a Full-Channel Effective Magnetorheological Damper with Trapezoidal Magnetic Rings. Wu H; Hu Y; Li Y; Gu S; Yue Z; Yang X; Zheng L Materials (Basel); 2023 Oct; 16(20):. PubMed ID: 37895800 [TBL] [Abstract][Full Text] [Related]
17. Influence of Magnetic Field on Sound Transmission Loss of the Unit Filled with Magnetorheological Fluid. Xu X; Wang Y; Wang Y Materials (Basel); 2022 Sep; 15(17):. PubMed ID: 36079413 [TBL] [Abstract][Full Text] [Related]
18. Design and analysis of an MR rotary brake for self-regulating braking torques. Yun D; Koo JH Rev Sci Instrum; 2017 May; 88(5):055103. PubMed ID: 28571442 [TBL] [Abstract][Full Text] [Related]
19. Multi-Objective Optimization Design and Performance Comparison of Magnetorheological Torsional Vibration Absorbers of Different Configurations. Liu G; Hu H; Ouyang Q; Zhang F Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37110006 [TBL] [Abstract][Full Text] [Related]
20. Design and performance evaluation of a rotary magnetorheological damper for unmanned vehicle suspension systems. Lee JH; Han C; Ahn D; Lee JK; Park SH; Park S ScientificWorldJournal; 2013; 2013():894016. PubMed ID: 23533366 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]