These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 34972452)

  • 1. Compressional wave propagation in saturated porous media and its numerical analysis using a space-time conservation element and solution element method.
    Yang D
    Rev Sci Instrum; 2021 Dec; 92(12):125108. PubMed ID: 34972452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurements of ultrasound velocity and attenuation in numerical anisotropic porous media compared to Biot's and multiple scattering models.
    Mézière F; Muller M; Bossy E; Derode A
    Ultrasonics; 2014 Jul; 54(5):1146-54. PubMed ID: 24125533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transient ultrasound propagation in porous media using Biot theory and fractional calculus: application to human cancellous bone.
    Fellah M; Fellah ZE; Mitri FG; Ogam E; Depollier C
    J Acoust Soc Am; 2013 Apr; 133(4):1867-81. PubMed ID: 23556556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of ultrasound propagation through bovine cancellous bone using elastic and Biot's finite-difference time-domain methods.
    Hosokawa A
    J Acoust Soc Am; 2005 Sep; 118(3 Pt 1):1782-9. PubMed ID: 16240836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. What kind of waves are measured in trabecular bone?
    Pakula M
    Ultrasonics; 2022 Jul; 123():106692. PubMed ID: 35176689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasonic wave propagation in bovine cancellous bone.
    Hosokawa A; Otani T
    J Acoust Soc Am; 1997 Jan; 101(1):558-62. PubMed ID: 9000743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro acoustic waves propagation in human and bovine cancellous bone.
    Cardoso L; Teboul F; Sedel L; Oddou C; Meunier A
    J Bone Miner Res; 2003 Oct; 18(10):1803-12. PubMed ID: 14584891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wave-induced fluid flow in random porous media: attenuation and dispersion of elastic waves.
    Müller TM; Gurevich B
    J Acoust Soc Am; 2005 May; 117(5):2732-41. PubMed ID: 15957744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Approximate expressions for viscous attenuation in marine sediments: relating Biot's "critical" and "peak" frequencies.
    Turgut A
    J Acoust Soc Am; 2000 Aug; 108(2):513-8. PubMed ID: 10955615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of acoustic characteristics predicted by Biot's theory and the modified Biot-Attenborough model in cancellous bone.
    Lee KI; Yoon SW
    J Biomech; 2006; 39(2):364-8. PubMed ID: 16321640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasonic wave propagation in porous media: determination of acoustic parameters and high frequency limit of the classical models.
    Leclaire P; Kelders L; Lauriks W; Glorieux C; Thoen J
    Stud Health Technol Inform; 1997; 40():139-55. PubMed ID: 10168875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A parametric analysis of waves propagating in a porous solid saturated by a three-phase fluid.
    Santos JE; Savioli GB
    J Acoust Soc Am; 2015 Nov; 138(5):3033-42. PubMed ID: 26627777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of Biot's theory to ultrasonic characterization of human cancellous bones: determination of structural, material, and mechanical properties.
    Pakula M; Padilla F; Laugier P; Kaczmarek M
    J Acoust Soc Am; 2008 Apr; 123(4):2415-23. PubMed ID: 18397044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of measurements of phase velocity in human calcaneus to Biot theory.
    Wear KA; Laib A; Stuber AP; Reynolds JC
    J Acoust Soc Am; 2005 May; 117(5):3319-24. PubMed ID: 15957798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of critical and viscous frequencies for Biot theory in cancellous bone.
    Hughes ER; Leighton TG; Petley GW; White PR; Chivers RC
    Ultrasonics; 2003 Jul; 41(5):365-8. PubMed ID: 12788218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phenomenological model of propagation of the elastic waves in a fluid-saturated porous solid with nonzero boundary slip velocity.
    Tsiklauri D
    J Acoust Soc Am; 2002 Sep; 112(3 Pt 1):843-9. PubMed ID: 12243170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast compressional wave attenuation and dispersion due to conversion scattering into slow shear waves in randomly heterogeneous porous media.
    Müller TM; Sahay PN
    J Acoust Soc Am; 2011 May; 129(5):2785-96. PubMed ID: 21568383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of water saturation on propagation of elastic waves in transversely isotropic nearly saturated soil.
    Li BZ; Cai YQ
    J Zhejiang Univ Sci; 2003; 4(6):694-701. PubMed ID: 14566985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasonic pulse waves in cancellous bone analyzed by finite-difference time-domain methods.
    Hosokawa A
    Ultrasonics; 2006 Dec; 44 Suppl 1():e227-31. PubMed ID: 16844171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasonic wave propagation in human cancellous bone: application of Biot theory.
    Fellah ZE; Chapelon JY; Berger S; Lauriks W; Depollier C
    J Acoust Soc Am; 2004 Jul; 116(1):61-73. PubMed ID: 15295965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.