These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 34972957)

  • 21. The biology and polymer physics underlying large-scale chromosome organization.
    Sazer S; Schiessel H
    Traffic; 2018 Feb; 19(2):87-104. PubMed ID: 29105235
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Live-cell micromanipulation of a genomic locus reveals interphase chromatin mechanics.
    Keizer VIP; Grosse-Holz S; Woringer M; Zambon L; Aizel K; Bongaerts M; Delille F; Kolar-Znika L; Scolari VF; Hoffmann S; Banigan EJ; Mirny LA; Dahan M; Fachinetti D; Coulon A
    Science; 2022 Jul; 377(6605):489-495. PubMed ID: 35901134
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cdk1-dependent phosphorylation of KIF4A at S1186 triggers lateral chromosome compaction during early mitosis.
    Takata H; Madung M; Katoh K; Fukui K
    PLoS One; 2018; 13(12):e0209614. PubMed ID: 30576375
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chromosome dynamics, molecular crowding, and diffusion in the interphase cell nucleus: a Monte Carlo lattice simulation study.
    Fritsch CC; Langowski J
    Chromosome Res; 2011 Jan; 19(1):63-81. PubMed ID: 21116704
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genomics tools for unraveling chromosome architecture.
    van Steensel B; Dekker J
    Nat Biotechnol; 2010 Oct; 28(10):1089-95. PubMed ID: 20944601
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Condensin II Regulates Interphase Chromatin Organization Through the Mrg-Binding Motif of Cap-H2.
    Wallace HA; Klebba JE; Kusch T; Rogers GC; Bosco G
    G3 (Bethesda); 2015 Mar; 5(5):803-17. PubMed ID: 25758823
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mesoscale, long-time mixing of chromosomes and its connection to polymer dynamics.
    Bajpai G; Safran S
    PLoS Comput Biol; 2023 May; 19(5):e1011142. PubMed ID: 37228178
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Physical tethering and volume exclusion determine higher-order genome organization in budding yeast.
    Tjong H; Gong K; Chen L; Alber F
    Genome Res; 2012 Jul; 22(7):1295-305. PubMed ID: 22619363
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multiple regimes of constrained chromosome motion are regulated in the interphase Drosophila nucleus.
    Vazquez J; Belmont AS; Sedat JW
    Curr Biol; 2001 Aug; 11(16):1227-39. PubMed ID: 11525737
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unveiling the Machinery behind Chromosome Folding by Polymer Physics Modeling.
    Conte M; Esposito A; Vercellone F; Abraham A; Bianco S
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36835064
    [TBL] [Abstract][Full Text] [Related]  

  • 31. ChromEMT: Visualizing 3D chromatin structure and compaction in interphase and mitotic cells.
    Ou HD; Phan S; Deerinck TJ; Thor A; Ellisman MH; O'Shea CC
    Science; 2017 Jul; 357(6349):. PubMed ID: 28751582
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chromosome disentanglement driven via optimal compaction of loop-extruded brush structures.
    Brahmachari S; Marko JF
    Proc Natl Acad Sci U S A; 2019 Dec; 116(50):24956-24965. PubMed ID: 31757850
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SAP-like domain in nucleolar spindle associated protein mediates mitotic chromosome loading as well as interphase chromatin interaction.
    Verbakel W; Carmeliet G; Engelborghs Y
    Biochem Biophys Res Commun; 2011 Aug; 411(4):732-7. PubMed ID: 21782797
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stress induced by premature chromatin condensation triggers chromosome shattering and chromothripsis at DNA sites still replicating in micronuclei or multinucleate cells when primary nuclei enter mitosis.
    Terzoudi GI; Karakosta M; Pantelias A; Hatzi VI; Karachristou I; Pantelias G
    Mutat Res Genet Toxicol Environ Mutagen; 2015 Nov; 793():185-98. PubMed ID: 26520389
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chromosome organization through the cell cycle at a glance.
    Srinivasan D; Shisode T; Shrinet J; Fraser P
    J Cell Sci; 2022 May; 135(10):. PubMed ID: 35608019
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chromatin Conformation Capture-Based Analysis of Nuclear Architecture.
    Grob S; Grossniklaus U
    Methods Mol Biol; 2017; 1456():15-32. PubMed ID: 27770354
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High resolution analysis of interphase chromosome domains.
    Visser AE; Jaunin F; Fakan S; Aten JA
    J Cell Sci; 2000 Jul; 113 ( Pt 14)():2585-93. PubMed ID: 10862716
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamic and equilibrium properties of finite-size polymer models of chromosome folding.
    Conte M; Fiorillo L; Annunziatella C; Esposito A; Musella F; Abraham A; Bianco S; Chiariello AM
    Phys Rev E; 2021 Nov; 104(5-1):054402. PubMed ID: 34942797
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamic Nuclear Structure Emerges from Chromatin Cross-Links and Motors.
    Liu K; Patteson AE; Banigan EJ; Schwarz JM
    Phys Rev Lett; 2021 Apr; 126(15):158101. PubMed ID: 33929233
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cyclic-polymer grafted colloids in spherical confinement: insights for interphase chromosome organization.
    Paturej J; Erbaş A
    Phys Biol; 2023 Jul; 20(5):. PubMed ID: 37442118
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.