BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 34973112)

  • 21. Genetic control of some plant growth characteristics of bread wheat (Triticum aestivum L.) under aluminum stress.
    Farokhzadeh S; Fakheri BA; Nezhad NM; Tahmasebi S; Mirsoleimani A; Lynne McIntyre C
    Genes Genomics; 2020 Mar; 42(3):245-261. PubMed ID: 31833049
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Estimating additive and non-additive genetic variances and predicting genetic merits using genome-wide dense single nucleotide polymorphism markers.
    Su G; Christensen OF; Ostersen T; Henryon M; Lund MS
    PLoS One; 2012; 7(9):e45293. PubMed ID: 23028912
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genome-Wide Association Studies and Comparison of Models and Cross-Validation Strategies for Genomic Prediction of Quality Traits in Advanced Winter Wheat Breeding Lines.
    Kristensen PS; Jahoor A; Andersen JR; Cericola F; Orabi J; Janss LL; Jensen J
    Front Plant Sci; 2018; 9():69. PubMed ID: 29456546
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phenotype Prediction Under Epistasis.
    Vojgani E; Pook T; Simianer H
    Methods Mol Biol; 2021; 2212():105-120. PubMed ID: 33733353
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Choosing the right tool: Leveraging of plant genetic resources in wheat (Triticum aestivum L.) benefits from selection of a suitable genomic prediction model.
    Berkner MO; Schulthess AW; Zhao Y; Jiang Y; Oppermann M; Reif JC
    Theor Appl Genet; 2022 Dec; 135(12):4391-4407. PubMed ID: 36182979
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A quantitative genetic framework highlights the role of epistatic effects for grain-yield heterosis in bread wheat.
    Jiang Y; Schmidt RH; Zhao Y; Reif JC
    Nat Genet; 2017 Dec; 49(12):1741-1746. PubMed ID: 29038596
    [TBL] [Abstract][Full Text] [Related]  

  • 27. BWGS: A R package for genomic selection and its application to a wheat breeding programme.
    Charmet G; Tran LG; Auzanneau J; Rincent R; Bouchet S
    PLoS One; 2020; 15(4):e0222733. PubMed ID: 32240182
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Locally epistatic genomic relationship matrices for genomic association and prediction.
    Akdemir D; Jannink JL
    Genetics; 2015 Mar; 199(3):857-71. PubMed ID: 25614606
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simultaneous improvement of grain yield and protein content in durum wheat by different phenotypic indices and genomic selection.
    Rapp M; Lein V; Lacoudre F; Lafferty J; Müller E; Vida G; Bozhanova V; Ibraliu A; Thorwarth P; Piepho HP; Leiser WL; Würschum T; Longin CFH
    Theor Appl Genet; 2018 Jun; 131(6):1315-1329. PubMed ID: 29511784
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phantom Epistasis in Genomic Selection: On the Predictive Ability of Epistatic Models.
    Schrauf MF; Martini JWR; Simianer H; de Los Campos G; Cantet R; Freudenthal J; Korte A; Munilla S
    G3 (Bethesda); 2020 Sep; 10(9):3137-3145. PubMed ID: 32709618
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prediction of genetic values of quantitative traits with epistatic effects in plant breeding populations.
    Wang D; Salah El-Basyoni I; Stephen Baenziger P; Crossa J; Eskridge KM; Dweikat I
    Heredity (Edinb); 2012 Nov; 109(5):313-9. PubMed ID: 22892636
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On the partitioning of genetic variance with epistasis.
    Alvarez-Castro JM; Le Rouzic A
    Methods Mol Biol; 2015; 1253():95-114. PubMed ID: 25403529
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genomic Selection for Processing and End-Use Quality Traits in the CIMMYT Spring Bread Wheat Breeding Program.
    Battenfield SD; Guzmán C; Gaynor RC; Singh RP; Peña RJ; Dreisigacker S; Fritz AK; Poland JA
    Plant Genome; 2016 Jul; 9(2):. PubMed ID: 27898810
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modeling within and between Sub-Genomes Epistasis of Synthetic Hexaploid Wheat for Genome-Enabled Prediction of Diseases.
    Cuevas J; González-Diéguez D; Dreisigacker S; Martini JWR; Crespo-Herrera L; Lozano-Ramirez N; Singh PK; He X; Huerta J; Crossa J
    Genes (Basel); 2024 Feb; 15(3):. PubMed ID: 38540321
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Significance of linkage disequilibrium and epistasis on genetic variances in noninbred and inbred populations.
    Viana JMS; Garcia AAF
    BMC Genomics; 2022 Apr; 23(1):286. PubMed ID: 35397494
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simultaneous selection for grain yield and protein content in genomics-assisted wheat breeding.
    Michel S; Löschenberger F; Ametz C; Pachler B; Sparry E; Bürstmayr H
    Theor Appl Genet; 2019 Jun; 132(6):1745-1760. PubMed ID: 30810763
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genomic prediction with non-additive effects in beef cattle: stability of variance component and genetic effect estimates against population size.
    Onogi A; Watanabe T; Ogino A; Kurogi K; Togashi K
    BMC Genomics; 2021 Jul; 22(1):512. PubMed ID: 34233617
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling Epistasis in Genomic Selection.
    Jiang Y; Reif JC
    Genetics; 2015 Oct; 201(2):759-68. PubMed ID: 26219298
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genomic-enabled Prediction Accuracies Increased by Modeling Genotype × Environment Interaction in Durum Wheat.
    Sukumaran S; Jarquin D; Crossa J; Reynolds M
    Plant Genome; 2018 Jul; 11(2):. PubMed ID: 30025014
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genetic architecture of male floral traits required for hybrid wheat breeding.
    Boeven PH; Longin CF; Leiser WL; Kollers S; Ebmeyer E; Würschum T
    Theor Appl Genet; 2016 Dec; 129(12):2343-2357. PubMed ID: 27553082
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.