BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 34973200)

  • 1. Design and preparation of functional azo linked polymers for the adsorptive removal of bisphenol A from water: Performance and analysis of the mechanism.
    Dong S; Rene ER; Zhao L; Xiaoxiu L; Ma W
    Environ Res; 2022 Apr; 206():112601. PubMed ID: 34973200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Green synthesis of magnetic azo-linked porous organic polymers with recyclable properties for enhanced Bisphenol-A adsorption from aqueous solutions.
    Zhuang Y; Li S; Rene ER; Dong S; Ma W
    Environ Res; 2024 May; 249():118427. PubMed ID: 38325780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aqueous adsorption of bisphenol A over a porphyrinic porous organic polymer.
    Lee MY; Ahmed I; Yu K; Lee CS; Kang KK; Jang MS; Ahn WS
    Chemosphere; 2021 Feb; 265():129161. PubMed ID: 33302201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of chitin based hydrophilic hyper-crosslinked porous polymer for efficiently removing bisphenol A from water.
    Li S; Li Z; Dong Y; Wang Q; Wang C; Wang Z; Wu Q
    Int J Biol Macromol; 2024 Mar; 262(Pt 1):129963. PubMed ID: 38336321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced removal of bisphenol A from aqueous solution by aluminum-based MOF/sodium alginate-chitosan composite beads.
    Luo Z; Chen H; Wu S; Yang C; Cheng J
    Chemosphere; 2019 Dec; 237():124493. PubMed ID: 31398611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carboxyl-functionalized polyimides for efficient bisphenol A removal: Influence of wettability and porosity on adsorption capacity.
    AlDawhi ZA; BinSharfan II; Abdulhamid MA
    Chemosphere; 2023 Feb; 313():137347. PubMed ID: 36427579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption of bisphenol A and 2,4-dichlorophenol onto cetylpyridinium chloride-modified pine sawdust: a kinetic and thermodynamic study.
    Wang H; Tian T; Wang D; Xu F; Ren W
    Environ Sci Pollut Res Int; 2022 Mar; 29(13):18932-18943. PubMed ID: 34704229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uptake of micropollutant-bisphenol A, methylene blue and neutral red onto a novel bagasse-β-cyclodextrin polymer by adsorption process.
    Mpatani FM; Aryee AA; Kani AN; Guo Q; Dovi E; Qu L; Li Z; Han R
    Chemosphere; 2020 Nov; 259():127439. PubMed ID: 32593825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amphoteric modified vermiculites as adsorbents for enhancing removal of organic pollutants: Bisphenol A and Tetrabromobisphenol A.
    Liu S; Wu P; Chen M; Yu L; Kang C; Zhu N; Dang Z
    Environ Pollut; 2017 Sep; 228():277-286. PubMed ID: 28551558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient recovery of bisphenol A from aqueous solution using K
    Wang K; Qin X; Chai K; Wei Z; Deng F; Liao B; Wu J; Shen F; Zhang Z
    Environ Sci Pollut Res Int; 2023 May; 30(25):67758-67770. PubMed ID: 37115443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural phenol-inspired porous polymers for efficient removal of tetracycline: Experimental and engineering analysis.
    Liu Y; Zhou H; Zhou X; Jin C; Liu G; Huo S; Chu F; Kong Z
    Chemosphere; 2023 Mar; 316():137798. PubMed ID: 36634714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Azo-linked porous organic polymers/polydimethylsiloxane coated stir bar for extraction of benzotriazole ultraviolet absorbers from environmental water and soil samples followed by high performance liquid chromatography-diode array detection.
    Wang Z; He M; Chen B; Hu B
    J Chromatogr A; 2020 Apr; 1616():460793. PubMed ID: 31866138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced removal of the endocrine disruptor compound Bisphenol A by adsorption onto green-carbon materials. Effect of real effluents on the adsorption process.
    Hernández-Abreu AB; Álvarez-Torrellas S; Águeda VI; Larriba M; Delgado JA; Calvo PA; García J
    J Environ Manage; 2020 Jul; 266():110604. PubMed ID: 32310125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorptive removal of bisphenol A, chloroxylenol, and carbamazepine from water using a novel β-cyclodextrin polymer.
    Zhou Y; Cheng G; Chen K; Lu J; Lei J; Pu S
    Ecotoxicol Environ Saf; 2019 Apr; 170():278-285. PubMed ID: 30529923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Porous multifunctional phenylcarbamoylated-β-cyclodextrin polymers for rapid removal of aromatic organic pollutants.
    Wang H; Liu C; Ma X; Wang Y
    Environ Sci Pollut Res Int; 2022 Feb; 29(10):13893-13904. PubMed ID: 34599452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of bisphenol A by adsorption mechanism using PES-SiO2 composite membranes.
    Muhamad MS; Salim MR; Lau WJ; Hadibarata T; Yusop Z
    Environ Technol; 2016 Aug; 37(15):1959-69. PubMed ID: 26729509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitrogen Doped Nanoporous Carbon Derived from Zizania Latifolia for Adsorptive Removal of Bisphenol A.
    Li Q; Song W; Habimana N; Wu XL; Zhong S; Lin H; Chen J
    J Nanosci Nanotechnol; 2019 Feb; 19(2):1026-1034. PubMed ID: 30360194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorptive removal of bisphenol A from aqueous solutions using phosphonated levan.
    Hacıosmanoğlu GG; Doğruel T; Genç S; Oner ET; Can ZS
    J Hazard Mater; 2019 Jul; 374():43-49. PubMed ID: 30978629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organo-vermiculites with biphenyl and dipyridyl gemini surfactants for adsorption of bisphenol A: Structure, mechanism and regeneration.
    Shen T; Gao M; Ding F; Zeng H; Yu M
    Chemosphere; 2018 Sep; 207():489-496. PubMed ID: 29807348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of bisphenol A from aqueous medium using molecularly surface imprinted microbeads.
    Bayramoglu G; Arica MY; Liman G; Celikbicak O; Salih B
    Chemosphere; 2016 May; 150():275-284. PubMed ID: 26907596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.