BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

376 related articles for article (PubMed ID: 34973294)

  • 21. Desmoplasia and oncogene driven acinar-to-ductal metaplasia are concurrent events during acinar cell-derived pancreatic cancer initiation in young adult mice.
    Johnson BL; d'Alincourt Salazar M; Mackenzie-Dyck S; D'Apuzzo M; Shih HP; Manuel ER; Diamond DJ
    PLoS One; 2019; 14(9):e0221810. PubMed ID: 31490946
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Muc16 depletion diminishes KRAS-induced tumorigenesis and metastasis by altering tumor microenvironment factors in pancreatic ductal adenocarcinoma.
    Lakshmanan I; Marimuthu S; Chaudhary S; Seshacharyulu P; Rachagani S; Muniyan S; Chirravuri-Venkata R; Atri P; Rauth S; Nimmakayala RK; Siddiqui JA; Gautam SK; Shah A; Natarajan G; Parte S; Bhyravbhatla N; Mallya K; Haridas D; Talmon GA; Smith LM; Kumar S; Ganti AK; Jain M; Ponnusamy MP; Batra SK
    Oncogene; 2022 Nov; 41(48):5147-5159. PubMed ID: 36271032
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lunatic Fringe is a potent tumor suppressor in Kras-initiated pancreatic cancer.
    Zhang S; Chung WC; Xu K
    Oncogene; 2016 May; 35(19):2485-95. PubMed ID: 26279302
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Gustatory Sensory G-Protein GNAT3 Suppresses Pancreatic Cancer Progression in Mice.
    Hoffman MT; Kemp SB; Salas-Escabillas DJ; Zhang Y; Steele NG; The S; Long D; Benitz S; Yan W; Margolskee RF; Bednar F; Pasca di Magliano M; Wen HJ; Crawford HC
    Cell Mol Gastroenterol Hepatol; 2021; 11(2):349-369. PubMed ID: 32882403
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The biological features of PanIN initiated from oncogenic Kras mutation in genetically engineered mouse models.
    Shen R; Wang Q; Cheng S; Liu T; Jiang H; Zhu J; Wu Y; Wang L
    Cancer Lett; 2013 Oct; 339(1):135-43. PubMed ID: 23887057
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Loss of Pten and Activation of Kras Synergistically Induce Formation of Intraductal Papillary Mucinous Neoplasia From Pancreatic Ductal Cells in Mice.
    Kopp JL; Dubois CL; Schaeffer DF; Samani A; Taghizadeh F; Cowan RW; Rhim AD; Stiles BL; Valasek M; Sander M
    Gastroenterology; 2018 Apr; 154(5):1509-1523.e5. PubMed ID: 29273451
    [TBL] [Abstract][Full Text] [Related]  

  • 27. RBPJ Deficiency Sensitizes Pancreatic Acinar Cells to KRAS-Mediated Pancreatic Intraepithelial Neoplasia Initiation.
    Pan L; Mulaw MA; Gout J; Guo M; Zarrin H; Schwarz P; Baumann B; Seufferlein T; Wagner M; Oswald F
    Cell Mol Gastroenterol Hepatol; 2023; 16(5):783-807. PubMed ID: 37543088
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Combination of PD-1 Inhibitor and OX40 Agonist Induces Tumor Rejection and Immune Memory in Mouse Models of Pancreatic Cancer.
    Ma Y; Li J; Wang H; Chiu Y; Kingsley CV; Fry D; Delaney SN; Wei SC; Zhang J; Maitra A; Yee C
    Gastroenterology; 2020 Jul; 159(1):306-319.e12. PubMed ID: 32179091
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Signal Transducer and Activator of Transcription 3, Mediated Remodeling of the Tumor Microenvironment Results in Enhanced Tumor Drug Delivery in a Mouse Model of Pancreatic Cancer.
    Nagathihalli NS; Castellanos JA; Shi C; Beesetty Y; Reyzer ML; Caprioli R; Chen X; Walsh AJ; Skala MC; Moses HL; Merchant NB
    Gastroenterology; 2015 Dec; 149(7):1932-1943.e9. PubMed ID: 26255562
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Loss of Somatostatin Receptor Subtype 2 Promotes Growth of KRAS-Induced Pancreatic Tumors in Mice by Activating PI3K Signaling and Overexpression of CXCL16.
    Chalabi-Dchar M; Cassant-Sourdy S; Duluc C; Fanjul M; Lulka H; Samain R; Roche C; Breibach F; Delisle MB; Poupot M; Dufresne M; Shimaoka T; Yonehara S; Mathonnet M; Pyronnet S; Bousquet C
    Gastroenterology; 2015 Jun; 148(7):1452-65. PubMed ID: 25683115
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nicotine promotes initiation and progression of KRAS-induced pancreatic cancer via Gata6-dependent dedifferentiation of acinar cells in mice.
    Hermann PC; Sancho P; CaƱamero M; Martinelli P; Madriles F; Michl P; Gress T; de Pascual R; Gandia L; Guerra C; Barbacid M; Wagner M; Vieira CR; Aicher A; Real FX; Sainz B; Heeschen C
    Gastroenterology; 2014 Nov; 147(5):1119-33.e4. PubMed ID: 25127677
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spontaneous induction of murine pancreatic intraepithelial neoplasia (mPanIN) by acinar cell targeting of oncogenic Kras in adult mice.
    Habbe N; Shi G; Meguid RA; Fendrich V; Esni F; Chen H; Feldmann G; Stoffers DA; Konieczny SF; Leach SD; Maitra A
    Proc Natl Acad Sci U S A; 2008 Dec; 105(48):18913-8. PubMed ID: 19028870
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tuft Cells Inhibit Pancreatic Tumorigenesis in Mice by Producing Prostaglandin D
    DelGiorno KE; Chung CY; Vavinskaya V; Maurer HC; Novak SW; Lytle NK; Ma Z; Giraddi RR; Wang D; Fang L; Naeem RF; Andrade LR; Ali WH; Tseng H; Tsui C; Gubbala VB; Ridinger-Saison M; Ohmoto M; Erikson GA; O'Connor C; Shokhirev MN; Hah N; Urade Y; Matsumoto I; Kaech SM; Singh PK; Manor U; Olive KP; Wahl GM
    Gastroenterology; 2020 Nov; 159(5):1866-1881.e8. PubMed ID: 32717220
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Anti-pancreatic tumor efficacy of a Listeria-based, Annexin A2-targeting immunotherapy in combination with anti-PD-1 antibodies.
    Kim VM; Blair AB; Lauer P; Foley K; Che X; Soares K; Xia T; Muth ST; Kleponis J; Armstrong TD; Wolfgang CL; Jaffee EM; Brockstedt D; Zheng L
    J Immunother Cancer; 2019 May; 7(1):132. PubMed ID: 31113479
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Activated pancreatic stellate cells sequester CD8+ T cells to reduce their infiltration of the juxtatumoral compartment of pancreatic ductal adenocarcinoma.
    Ene-Obong A; Clear AJ; Watt J; Wang J; Fatah R; Riches JC; Marshall JF; Chin-Aleong J; Chelala C; Gribben JG; Ramsay AG; Kocher HM
    Gastroenterology; 2013 Nov; 145(5):1121-32. PubMed ID: 23891972
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Loss of the transcriptional repressor TGIF1 results in enhanced Kras-driven development of pancreatic cancer.
    Weng CC; Hsieh MJ; Wu CC; Lin YC; Shan YS; Hung WC; Chen LT; Cheng KH
    Mol Cancer; 2019 May; 18(1):96. PubMed ID: 31109321
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genetic and pharmacologic abrogation of Snail1 inhibits acinar-to-ductal metaplasia in precursor lesions of pancreatic ductal adenocarcinoma and pancreatic injury.
    Fendrich V; Jendryschek F; Beeck S; Albers M; Lauth M; Esni F; Heeger K; Dengler J; Slater EP; Holler JPN; Baier A; Bartsch DK; Waldmann J
    Oncogene; 2018 Apr; 37(14):1845-1856. PubMed ID: 29367759
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Atorvastatin delays progression of pancreatic lesions to carcinoma by regulating PI3/AKT signaling in p48Cre/+ LSL-KrasG12D/+ mice.
    Mohammed A; Qian L; Janakiram NB; Lightfoot S; Steele VE; Rao CV
    Int J Cancer; 2012 Oct; 131(8):1951-62. PubMed ID: 22287227
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CD200 promotes immunosuppression in the pancreatic tumor microenvironment.
    Choueiry F; Torok M; Shakya R; Agrawal K; Deems A; Benner B; Hinton A; Shaffer J; Blaser BW; Noonan AM; Williams TM; Dillhoff M; Conwell DL; Hart PA; Cruz-Monserrate Z; Bai XF; Carson WE; Mace TA
    J Immunother Cancer; 2020 Jun; 8(1):. PubMed ID: 32581043
    [TBL] [Abstract][Full Text] [Related]  

  • 40. ER stress protein AGR2 precedes and is involved in the regulation of pancreatic cancer initiation.
    Dumartin L; Alrawashdeh W; Trabulo SM; Radon TP; Steiger K; Feakins RM; di Magliano MP; Heeschen C; Esposito I; Lemoine NR; Crnogorac-Jurcevic T
    Oncogene; 2017 Jun; 36(22):3094-3103. PubMed ID: 27941872
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.