BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 34973318)

  • 1. Physiological, biochemical and transcriptional responses of cyanobacteria to environmentally relevant concentrations of a typical antibiotic-roxithromycin.
    Xin R; Yu X; Fan J
    Sci Total Environ; 2022 Mar; 814():152703. PubMed ID: 34973318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influences of the micropollutant erythromycin on cyanobacteria treatment with potassium permanganate.
    Lin S; Yu X; Fang J; Fan J
    Water Res; 2020 Jun; 177():115786. PubMed ID: 32305701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptomic survey on the microcystins production and growth of Microcystis aeruginosa under nitrogen starvation.
    Zhou Y; Li X; Xia Q; Dai R
    Sci Total Environ; 2020 Jan; 700():134501. PubMed ID: 31689655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms for the stimulatory effects of a five-component mixture of antibiotics in Microcystis aeruginosa at transcriptomic and proteomic levels.
    Jiang Y; Liu Y; Zhang J
    J Hazard Mater; 2021 Mar; 406():124722. PubMed ID: 33296757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of glufosinate on the growth of and microcystin production by Microcystis aeruginosa at environmentally relevant concentrations.
    Zhang Q; Song Q; Wang C; Zhou C; Lu C; Zhao M
    Sci Total Environ; 2017 Jan; 575():513-518. PubMed ID: 27614857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of changes in Microcystis aeruginosa growth and microcystin production by urea via transcriptomic surveys.
    Zhou Y; Zhang X; Li X; Jia P; Dai R
    Sci Total Environ; 2019 Mar; 655():181-187. PubMed ID: 30469064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptome analysis of changes in M. aeruginosa growth and microcystin production under low concentrations of ethinyl estradiol.
    Ma Y; Yan F; An L; Shen W; Tang T; Li Z; Dai R
    Sci Total Environ; 2023 Feb; 859(Pt 2):160226. PubMed ID: 36395857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antibiotics induced alterations in cell density, photosynthesis, microcystin synthesis and proteomic expression of Microcystis aeruginosa during CuSO
    Jiang Y; Liu Y; Zhang J
    Aquat Toxicol; 2020 May; 222():105473. PubMed ID: 32203795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exposure to microcystin among coastal residents during a cyanobacteria bloom in Florida.
    Schaefer AM; Yrastorza L; Stockley N; Harvey K; Harris N; Grady R; Sullivan J; McFarland M; Reif JS
    Harmful Algae; 2020 Feb; 92():101769. PubMed ID: 32113588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Field and laboratory studies of fluorescence-based technologies for real-time tracking of cyanobacterial cell lysis and potential microcystins release.
    Tsai KP; Kirschman ZA; Moldaenke C; Chaffin JD; McClure A; Seo Y; Bridgeman TB
    Sci Total Environ; 2024 Apr; 920():171121. PubMed ID: 38382604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of low concentration of gallic acid on the growth and microcystin production of Microcystis aeruginosa.
    Luo Y; Dao G; Zhou G; Wang Z; Xu Z; Lu X; Pan X
    Sci Total Environ; 2024 Mar; 916():169765. PubMed ID: 38181948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Zinc on
    Perez JL; Chu T
    Toxins (Basel); 2020 Jan; 12(2):. PubMed ID: 32019107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitrogen limitation, toxin synthesis potential, and toxicity of cyanobacterial populations in Lake Okeechobee and the St. Lucie River Estuary, Florida, during the 2016 state of emergency event.
    Kramer BJ; Davis TW; Meyer KA; Rosen BH; Goleski JA; Dick GJ; Oh G; Gobler CJ
    PLoS One; 2018; 13(5):e0196278. PubMed ID: 29791446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitigating antibiotic pollution using cyanobacteria: Removal efficiency, pathways and metabolism.
    Pan M; Lyu T; Zhan L; Matamoros V; Angelidaki I; Cooper M; Pan G
    Water Res; 2021 Feb; 190():116735. PubMed ID: 33352526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The sensitivity of multiple ecotoxicological assays for evaluating Microcystis aeruginosa cellular algal organic matter and contribution of cyanotoxins to the toxicity.
    Šrédlová K; Šilhavecká S; Linhartová L; Semerád J; Michalíková K; Pivokonský M; Cajthaml T
    Toxicon; 2021 May; 195():69-77. PubMed ID: 33711366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microcystis genotypes in a tropical freshwater lake: Discovery of novel MIB-producing Microcystis with potentially unique synthesis pathway.
    Goh KC; Sim ZY; Te SH; He Y; Gin KY
    Sci Total Environ; 2024 Feb; 912():169249. PubMed ID: 38081424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genotype and host microbiome alter competitive interactions between Microcystis aeruginosa and Chlorella sorokiniana.
    Schmidt KC; Jackrel SL; Smith DJ; Dick GJ; Denef VJ
    Harmful Algae; 2020 Nov; 99():101939. PubMed ID: 33218432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Allelopathic effect of pyrogallic acid on cyanobacterium Microcystis aeruginosa: The regulatory role of nitric oxide and its significance for controlling harmful algal blooms (HABs).
    He Y; Zhou Y; Zhou Z; He J; Liu Y; Xiao Y; Long L; Deng O; Xiao H; Shen F; Deng S; Luo L
    Sci Total Environ; 2023 Feb; 858(Pt 1):159785. PubMed ID: 36309262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two different anti-algal control mechanisms in Microcystis aeruginosa induced by robinin or tannin rich plants.
    Gil CS; Eom SH
    Chemosphere; 2023 May; 323():138202. PubMed ID: 36849021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antibiotic contaminants reduced the treatment efficiency of UV-C on Microcystis aeruginosa through hormesis.
    Jiang Y; Liu Y; Zhang J
    Environ Pollut; 2020 Jun; 261():114193. PubMed ID: 32088440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.