These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 34973318)
81. An algicidal Streptomyces amritsarensis strain against Microcystis aeruginosa strongly inhibits microcystin synthesis simultaneously. Yu Y; Zeng Y; Li J; Yang C; Zhang X; Luo F; Dai X Sci Total Environ; 2019 Feb; 650(Pt 1):34-43. PubMed ID: 30195130 [TBL] [Abstract][Full Text] [Related]
82. Effect of Environmental Factors on Cyanobacterial Abundance and Cyanotoxins Production in Natural and Drinking Water, Bangladesh. Affan A; Khomavis HS; Al-Harbi SM; Haque M; Khan S Pak J Biol Sci; 2015 Feb; 18(2):50-8. PubMed ID: 26364354 [TBL] [Abstract][Full Text] [Related]
83. Identification of Microcystis aeruginosa Peptides Responsible for Allergic Sensitization and Characterization of Functional Interactions between Cyanobacterial Toxins and Immunogenic Peptides. Geh EN; Ghosh D; McKell M; de la Cruz AA; Stelma G; Bernstein JA Environ Health Perspect; 2015 Nov; 123(11):1159-66. PubMed ID: 25902363 [TBL] [Abstract][Full Text] [Related]
84. Influence of coexisting spiramycin contaminant on the harm of Microcystis aeruginosa at different nitrogen levels. Liu Y; Wang F; Chen X; Zhang J; Gao B J Hazard Mater; 2015 Mar; 285():517-24. PubMed ID: 25559779 [TBL] [Abstract][Full Text] [Related]
85. The effects of three chemical algaecides on cell numbers and toxin content of the cyanobacteria Microcystis aeruginosa and Anabaenopsis sp. Greenfield DI; Duquette A; Goodson A; Keppler CJ; Williams SH; Brock LM; Stackley KD; White D; Wilde SB Environ Manage; 2014 Nov; 54(5):1110-20. PubMed ID: 25078538 [TBL] [Abstract][Full Text] [Related]
86. Enhanced resistance of co-existing toxigenic and non-toxigenic Microcystis aeruginosa to pyrogallol compared with monostrains. Gao Y; Lu J; Orr PT; Chuang A; Franklin HM; Burford MA Toxicon; 2020 Mar; 176():47-54. PubMed ID: 32103795 [TBL] [Abstract][Full Text] [Related]
87. Effects of microcystin and complex cyanobacterial samples on the growth and oxidative stress parameters in green alga Pseudokirchneriella subcapitata and comparison with the model oxidative stressor--herbicide paraquat. Bártová K; Hilscherová K; Babica P; Maršálek B; Bláha L Environ Toxicol; 2011 Nov; 26(6):641-8. PubMed ID: 20549631 [TBL] [Abstract][Full Text] [Related]
88. iTRAQ-based quantitative proteomic analysis of Microcystis aeruginosa exposed to spiramycin at different nutrient levels. Chen S; Liu Y; Zhang J; Gao B Aquat Toxicol; 2017 Apr; 185():193-200. PubMed ID: 28236765 [TBL] [Abstract][Full Text] [Related]
89. Interactions between Microcystis aeruginosa and coexisting bisphenol A at different phosphorus levels. Yang M; Wang X Sci Total Environ; 2019 Mar; 658():439-448. PubMed ID: 30579201 [TBL] [Abstract][Full Text] [Related]
90. Transcriptional and Physiological Responses to Nutrient Loading on Toxin Formation and Photosynthesis in Microcystis Aeruginosa FACHB-905. Peng G; Lin S; Fan Z; Wang X Toxins (Basel); 2017 May; 9(5):. PubMed ID: 28513574 [TBL] [Abstract][Full Text] [Related]
91. Response of bacterial communities to cyanobacterial harmful algal blooms in Lake Taihu, China. Su X; Steinman AD; Tang X; Xue Q; Zhao Y; Xie L Harmful Algae; 2017 Sep; 68():168-177. PubMed ID: 28962977 [TBL] [Abstract][Full Text] [Related]
92. Cyanobacteria and their toxins in Guanting Reservoir of Beijing, China. Dai R; Liu H; Qu J; Ru J; Hou Y J Hazard Mater; 2008 May; 153(1-2):470-7. PubMed ID: 17919815 [TBL] [Abstract][Full Text] [Related]
93. Molecular characterization of cyanobacterial diversity and yearly fluctuations of Microcystin loads in a suburban Mediterranean Lake (Lake Pamvotis, Greece). Vareli K; Pilidis G; Mavrogiorgou MC; Briasoulis E; Sainis I J Environ Monit; 2009 Aug; 11(8):1506-12. PubMed ID: 19657535 [TBL] [Abstract][Full Text] [Related]
94. Investigation of dissolved organic matter's influence on the toxicity of cadmium to the cyanobacterium Microcystis aeruginosa by biochemical and molecular assays. Ta M; Wei J; Ye S; Zhang J; Song T; Li M Environ Sci Pollut Res Int; 2023 Sep; 30(41):94790-94802. PubMed ID: 37540421 [TBL] [Abstract][Full Text] [Related]
95. Physiological effects of nitrate, ammonium, and urea on the growth and microcystins contamination of Microcystis aeruginosa: Implication for nitrogen mitigation. Chen Q; Wang M; Zhang J; Shi W; Mynett AE; Yan H; Hu L Water Res; 2019 Oct; 163():114890. PubMed ID: 31351354 [TBL] [Abstract][Full Text] [Related]
96. Potential Impacts on Treated Water Quality of Recycling Dewatered Sludge Supernatant during Harmful Cyanobacterial Blooms. Pinkanjananavee K; Teh SJ; Kurobe T; Lam CH; Tran F; Young TM Toxins (Basel); 2021 Jan; 13(2):. PubMed ID: 33572944 [TBL] [Abstract][Full Text] [Related]
97. Nanoplastics Promote Microcystin Synthesis and Release from Cyanobacterial Feng LJ; Sun XD; Zhu FP; Feng Y; Duan JL; Xiao F; Li XY; Shi Y; Wang Q; Sun JW; Liu XY; Liu JQ; Zhou LL; Wang SG; Ding Z; Tian H; Galloway TS; Yuan XZ Environ Sci Technol; 2020 Mar; 54(6):3386-3394. PubMed ID: 31961660 [TBL] [Abstract][Full Text] [Related]
98. Improved detection of mcyA genes and their phylogenetic origins in harmful algal blooms. Lee J; Choi J; Fatka M; Swanner E; Ikuma K; Liang X; Leung T; Howe A Water Res; 2020 Jun; 176():115730. PubMed ID: 32234603 [TBL] [Abstract][Full Text] [Related]
99. Self-Immolative Polythiophene for Sunlight Inactivation of Harmful Cyanobacteria. Lang Y; Wang Y; Zhou R; Wu P Environ Sci Technol; 2023 May; 57(20):7800-7808. PubMed ID: 37163388 [TBL] [Abstract][Full Text] [Related]
100. [Seasonal and Spatial Variations of Microcystins and Their Relationships with Physiochemical and Biological Factors in Poyang Lake]. Yuan LJ; Liao QG; Zhang L; Zhang DW; Luo LG; Liu JT Huan Jing Ke Xue; 2018 Jan; 39(1):450-459. PubMed ID: 29965713 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]