These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 34973318)
101. Algicidal mechanism of Raoultella ornithinolytica against Microcystis aeruginosa: Antioxidant response, photosynthetic system damage and microcystin degradation. Li D; Kang X; Chu L; Wang Y; Song X; Zhao X; Cao X Environ Pollut; 2021 Oct; 287():117644. PubMed ID: 34426391 [TBL] [Abstract][Full Text] [Related]
102. A Streptomyces globisporus strain kills Microcystis aeruginosa via cell-to-cell contact. Zeng Y; Wang J; Yang C; Ding M; Hamilton PB; Zhang X; Yang C; Zhnag L; Dai X Sci Total Environ; 2021 May; 769():144489. PubMed ID: 33465632 [TBL] [Abstract][Full Text] [Related]
103. Oxidative stress in the cyanobacterium Microcystis aeruginosa PCC 7813: Comparison of different analytical cell stress detection assays. Menezes I; Maxwell-McQueeney D; Capelo-Neto J; Pestana CJ; Edwards C; Lawton LA Chemosphere; 2021 Apr; 269():128766. PubMed ID: 33143884 [TBL] [Abstract][Full Text] [Related]
104. Environmental factors associated with cyanobacterial assemblages in a mesotrophic subtropical plateau lake: A focus on bloom toxicity. Hu L; Shan K; Huang L; Li Y; Zhao L; Zhou Q; Song L Sci Total Environ; 2021 Jul; 777():146052. PubMed ID: 33677307 [TBL] [Abstract][Full Text] [Related]
105. PAHs would alter cyanobacterial blooms by affecting the microcystin production and physiological characteristics of Microcystis aeruginosa. Zhang M; Wang X; Tao J; Li S; Hao S; Zhu X; Hong Y Ecotoxicol Environ Saf; 2018 Aug; 157():134-142. PubMed ID: 29621704 [TBL] [Abstract][Full Text] [Related]
106. Growth and Cellular Responses of Toxigenic Microcystis to Chloramphenicol-Stress at Various Environmentally-Relevant Nitrogen Levels. Li J; Luo L; Zhang Z; Hu J Bull Environ Contam Toxicol; 2020 Aug; 105(2):337-344. PubMed ID: 32676683 [TBL] [Abstract][Full Text] [Related]
107. Physiology, microcystin production, and transcriptomic responses of Microcystis aeruginosa exposed to calcium and magnesium. Yin L; Xu L; Shi K; Chen W; Zhang Y; Wang J; An J; He H; Yang S; Ni L; Li S Sci Total Environ; 2024 Feb; 913():169786. PubMed ID: 38181954 [TBL] [Abstract][Full Text] [Related]
108. The effects of Microcystis aeruginosa cells lysate containing microcystins on physiological and molecular responses in the nematode Caenorhabditis elegans. Sopezki MS; Josende ME; Cruz LC; Yunes JS; Lima JV; Zanette J Environ Toxicol; 2020 May; 35(5):591-598. PubMed ID: 31916382 [TBL] [Abstract][Full Text] [Related]
109. Acetylacetone effectively controlled the secondary metabolites of Microcystis aeruginosa under simulated sunlight irradiation. Wang X; Luo Y; Zhang S; Zhou L J Environ Sci (China); 2024 Jan; 135():285-295. PubMed ID: 37778804 [TBL] [Abstract][Full Text] [Related]
110. Investigation of a Microcystis aeruginosa cyanobacterial freshwater harmful algal bloom associated with acute microcystin toxicosis in a dog. van der Merwe D; Sebbag L; Nietfeld JC; Aubel MT; Foss A; Carney E J Vet Diagn Invest; 2012 Jul; 24(4):679-87. PubMed ID: 22604771 [TBL] [Abstract][Full Text] [Related]
111. Microcystins induce morphological and physiological changes in selected representative phytoplanktons. Sedmak B; Elersek T Microb Ecol; 2006 May; 51(4):508-15. PubMed ID: 16645927 [TBL] [Abstract][Full Text] [Related]
112. Insights into the conversion of dissolved organic phosphorus favors algal bloom, arsenate biotransformation and microcystins release of Microcystis aeruginosa. Zhang X; Wang Z; Luo Z; Chen Y; Huang X J Environ Sci (China); 2023 Mar; 125():205-214. PubMed ID: 36375906 [TBL] [Abstract][Full Text] [Related]
113. Differential effects of nitrate and ammonium on the growth of algae and microcystin production by nitrogen-fixing Nostoc sp. and non-nitrogen-fixing Microcystis aeruginosa. Yang N; Li Z; Wu Z; Liu X; Zhang Y; Sun T; Wang X; Zhao Y; Tong Y Water Sci Technol; 2023 Jul; 88(1):136-150. PubMed ID: 37452539 [TBL] [Abstract][Full Text] [Related]
114. Evaluation of potassium ferrate as an alternative disinfectant on cyanobacteria inactivation and associated toxin fate in various waters. Fan J; Lin BH; Chang CW; Zhang Y; Lin TF Water Res; 2018 Feb; 129():199-207. PubMed ID: 29149675 [TBL] [Abstract][Full Text] [Related]
115. Physiological effects caused by microcystin-producing and non-microcystin producing Microcystis aeruginosa on medaka fish: A proteomic and metabolomic study on liver. Le Manach S; Sotton B; Huet H; Duval C; Paris A; Marie A; Yépremian C; Catherine A; Mathéron L; Vinh J; Edery M; Marie B Environ Pollut; 2018 Mar; 234():523-537. PubMed ID: 29220784 [TBL] [Abstract][Full Text] [Related]
116. Transcriptomic mechanisms for the promotion of cyanobacterial growth against eukaryotic microalgae by a ternary antibiotic mixture. Xu S; Liu Y; Zhang J Environ Sci Pollut Res Int; 2022 Aug; 29(39):58881-58891. PubMed ID: 35377122 [TBL] [Abstract][Full Text] [Related]
117. Role of illumination intensity in microcystin development using Microcystis aeruginosa as the model algae. Liu H; Song X; Guan Y; Pan D; Li Y; Xu S; Fang Y Environ Sci Pollut Res Int; 2017 Oct; 24(29):23261-23272. PubMed ID: 28831771 [TBL] [Abstract][Full Text] [Related]
118. Urea Is Both a Carbon and Nitrogen Source for Krausfeldt LE; Farmer AT; Castro Gonzalez HF; Zepernick BN; Campagna SR; Wilhelm SW Front Microbiol; 2019; 10():1064. PubMed ID: 31164875 [TBL] [Abstract][Full Text] [Related]
119. Toxicity of the disinfectant benzalkonium chloride (C Jia Y; Huang Y; Ma J; Zhang S; Liu J; Li T; Song L J Environ Sci (China); 2024 Jan; 135():198-209. PubMed ID: 37778795 [TBL] [Abstract][Full Text] [Related]
120. Comparative metabolomic analysis of exudates of microcystin-producing and microcystin-free Zhou Y; Xu J; MacIsaac HJ; McKay RM; Xu R; Pei Y; Zi Y; Li J; Qian Y; Chang X Front Microbiol; 2022; 13():1075621. PubMed ID: 36741884 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]