These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 34973327)

  • 1. Selecting the optimal nutrients recovery application for a biogas slurry based on its characteristics and the local environmental conditions: A critical review.
    Sobhi M; Guo J; Gaballah MS; Li B; Zheng J; Cui X; Sun H; Dong R
    Sci Total Environ; 2022 Mar; 814():152700. PubMed ID: 34973327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of mathematical optimization to exploit regional nutrient recycling potential of biogas plant digestate.
    Tampio E; Pettersson F; Rasi S; Tuomaala M
    Waste Manag; 2022 Jul; 149():105-113. PubMed ID: 35728474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An effective integrated system used in separating for anaerobic digestate and concentrating for biogas slurry.
    Bao Y; Fu Y; Wang C; Wang H
    Environ Technol; 2021 Dec; 42(28):4434-4443. PubMed ID: 32338158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A review of advances in valorization and post-treatment of anaerobic digestion liquid fraction effluent.
    Sfetsas T; Patsatzis S; Chioti A; Kopteropoulos A; Dimitropoulou G; Tsioni V; Kotsopoulos T
    Waste Manag Res; 2022 Aug; 40(8):1093-1109. PubMed ID: 35057678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining anaerobic digestion slurry and different biochars to develop a biochar-based slow-release NPK fertilizer.
    Villada E; Velasquez M; Gómez AM; Correa JD; Saldarriaga JF; López JE; Tamayo A
    Sci Total Environ; 2024 Jun; 927():171982. PubMed ID: 38575013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nutrient Recovery from Digestate of Agricultural Biogas Plants: A Comparative Study of Innovative Biocoal-Based Additives in Laboratory and Full-Scale Experiments.
    Morozova I; Lemmer A
    Molecules; 2022 Aug; 27(16):. PubMed ID: 36014527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of biogas digestate typology on nutrient recovery for plant growth: Accessibility indicators for first fertilization prediction.
    Jimenez J; Grigatti M; Boanini E; Patureau D; Bernet N
    Waste Manag; 2020 Nov; 117():18-31. PubMed ID: 32805598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First fertilizing-value typology of digestates: A decision-making tool for regulation.
    Guilayn F; Jimenez J; Martel JL; Rouez M; Crest M; Patureau D
    Waste Manag; 2019 Mar; 86():67-79. PubMed ID: 30902241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solid-liquid separation of digestate from biogas plants: A systematic review of the techniques' performance.
    Carraro G; Tonderski K; Enrich-Prast A
    J Environ Manage; 2024 Apr; 356():120585. PubMed ID: 38508011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of by-products of bioenergy systems (anaerobic digestion and gasification) as potential crop nutrient.
    Kataki S; Hazarika S; Baruah DC
    Waste Manag; 2017 Jan; 59():102-117. PubMed ID: 27771200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of biogas slurry concentrated by reverse osmosis system: characteristics, optimization, and mechanism.
    Zheng T; Qiu Z; Dai Q; Chen J
    Water Environ Res; 2019 Nov; 91(11):1447-1454. PubMed ID: 31063631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microalgal Cultivation in Treating Liquid Digestate from Biogas Systems.
    Xia A; Murphy JD
    Trends Biotechnol; 2016 Apr; 34(4):264-275. PubMed ID: 26776247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microalgal cultivation with biogas slurry for biofuel production.
    Zhu L; Yan C; Li Z
    Bioresour Technol; 2016 Nov; 220():629-636. PubMed ID: 27599623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Management strategies for anaerobic digestate of organic fraction of municipal solid waste: Current status and future prospects.
    Logan M; Visvanathan C
    Waste Manag Res; 2019 Jan; 37(1_suppl):27-39. PubMed ID: 30761956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Consequential environmental life cycle assessment of a farm-scale biogas plant.
    Van Stappen F; Mathot M; Decruyenaere V; Loriers A; Delcour A; Planchon V; Goffart JP; Stilmant D
    J Environ Manage; 2016 Jun; 175():20-32. PubMed ID: 27017269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative nutrient leaching capability of cattle dung biogas digestate and inorganic fertilizer under spinach cropping condition.
    Tshikalange B; Bello ZA; Ololade OO
    Environ Sci Pollut Res Int; 2020 Jan; 27(3):3237-3246. PubMed ID: 31838669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The survival of pathogenic bacteria and plant growth promoting bacteria during mesophilic anaerobic digestion in full-scale biogas plants.
    Qi G; Pan Z; Yamamoto Y; Andriamanohiarisoamanana FJ; Yamashiro T; Iwasaki M; Ihara I; Tangtaweewipat S; Umetsu K
    Anim Sci J; 2019 Feb; 90(2):297-303. PubMed ID: 30554439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The challenges and perspectives for anaerobic digestion of animal waste and fertilizer application of the digestate.
    Samoraj M; Mironiuk M; Izydorczyk G; Witek-Krowiak A; Szopa D; Moustakas K; Chojnacka K
    Chemosphere; 2022 May; 295():133799. PubMed ID: 35114259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The fertilising potential of manure-based biogas fermentation residues: pelleted
    Valentinuzzi F; Cavani L; Porfido C; Terzano R; Pii Y; Cesco S; Marzadori C; Mimmo T
    Heliyon; 2020 Feb; 6(2):e03325. PubMed ID: 32055736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Agronomic characteristics of five different urban waste digestates.
    Tampio E; Salo T; Rintala J
    J Environ Manage; 2016 Mar; 169():293-302. PubMed ID: 26773433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.