BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 34973549)

  • 1. Biofilm-associated heat resistance of Bacillus cereus spores in vitro and in a food model, Cheonggukjang jjigae.
    Pawluk AM; Kim D; Jin YH; Jeong KC; Mah JH
    Int J Food Microbiol; 2022 Feb; 363():109505. PubMed ID: 34973549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inactivation kinetics of slightly acidic electrolyzed water combined with benzalkonium chloride and mild heat treatment on vegetative cells, spores, and biofilms of Bacillus cereus.
    Hussain MS; Tango CN; Oh DH
    Food Res Int; 2019 Feb; 116():157-167. PubMed ID: 30716932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacillus cereus spores and toxins - The potential role of biofilms.
    Huang Y; Flint SH; Palmer JS
    Food Microbiol; 2020 Sep; 90():103493. PubMed ID: 32336372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficacy of gaseous chlorine dioxide in inactivating Bacillus cereus spores attached to and in a biofilm on stainless steel.
    Nam H; Seo HS; Bang J; Kim H; Beuchat LR; Ryu JH
    Int J Food Microbiol; 2014 Oct; 188():122-7. PubMed ID: 25090607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sporulation environment of emetic toxin-producing Bacillus cereus strains determines spore size, heat resistance and germination capacity.
    van der Voort M; Abee T
    J Appl Microbiol; 2013 Apr; 114(4):1201-10. PubMed ID: 23279596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Attachment strength and biofilm forming ability of Bacillus cereus on green-leafy vegetables: cabbage and lettuce.
    Elhariry HM
    Food Microbiol; 2011 Oct; 28(7):1266-74. PubMed ID: 21839375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of food matrix on outgrowth heterogeneity of heat damaged Bacillus cereus spores.
    Warda AK; den Besten HM; Sha N; Abee T; Nierop Groot MN
    Int J Food Microbiol; 2015 May; 201():27-34. PubMed ID: 25727186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Air-liquid interface biofilms of Bacillus cereus: formation, sporulation, and dispersion.
    Wijman JG; de Leeuw PP; Moezelaar R; Zwietering MH; Abee T
    Appl Environ Microbiol; 2007 Mar; 73(5):1481-8. PubMed ID: 17209076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biofilm-spore response in Bacillus cereus and Bacillus subtilis during nutrient limitation.
    Lindsay D; Brözel VS; Von Holy A
    J Food Prot; 2006 May; 69(5):1168-72. PubMed ID: 16715822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic insights into the adaptive evolvability of spore heat resistance in Bacillus cereus sensu lato.
    Khanal S; Kim TD; Begyn K; Duverger W; Kramer G; Brul S; Rajkovic A; Devlieghere F; Heyndrickx M; Schymkowitz J; Rousseau F; Broussolle V; Michiels C; Aertsen A
    Int J Food Microbiol; 2024 Jun; 418():110709. PubMed ID: 38663147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of dry sanitizing methods on Bacillus cereus biofilm.
    Harada AMM; Nascimento MS
    Braz J Microbiol; 2021 Jun; 52(2):919-926. PubMed ID: 33619697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strain variation in Bacillus cereus biofilms and their susceptibility to extracellular matrix-degrading enzymes.
    Lim ES; Baek SY; Oh T; Koo M; Lee JY; Kim HJ; Kim JS
    PLoS One; 2021; 16(6):e0245708. PubMed ID: 34133441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of the impacts of electro-activated solutions of calcium lactate, calcium ascorbate and their equimolar mixture combined with moderate heat treatments on the spores of Bacillus cereus ATCC 14579 under model conditions and in fresh salmon.
    Cayemitte PE; Gerliani N; Raymond P; Aider M
    Int J Food Microbiol; 2021 Nov; 358():109285. PubMed ID: 34144838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of the Isolation Source on the Biofilm Formation Characteristics of
    Hussain M; Oh DH
    J Microbiol Biotechnol; 2018 Jan; 28(1):77-86. PubMed ID: 29121701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for Bacillus cereus Spores as the Target Pathogen in Thermally Processed Extended Shelf Life Refrigerated Foods.
    Reddy NR; Morrissey TR; Aguilar VL; Schill KM; Skinner GE
    J Food Prot; 2021 Mar; 84(3):442-448. PubMed ID: 33125074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Heat treatment for the control of Bacillus cereus spores in foods].
    Tanaka K; Motoi H; Hara-Kudo Y
    Shokuhin Eiseigaku Zasshi; 2005 Feb; 46(1):1-7. PubMed ID: 15881248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of spore purity on the wet heat resistance of Clostridium perfringens, Bacillus cereus and Bacillus subtilis spores.
    Juneja VK; Osoria M; Altuntas EG; Taneja NK; Thakur S; Kumar GD; Setlow P
    Food Res Int; 2024 Feb; 177():113904. PubMed ID: 38225145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superheated steam effectively inactivates diverse microbial targets despite mediating effects from food matrices in bench-scale assessments.
    Rana YS; Chen L; Balasubramaniam VM; Snyder AB
    Int J Food Microbiol; 2022 Oct; 378():109838. PubMed ID: 35863173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cleaning and Disinfection of Bacillus cereus Biofilm.
    Deal A; Klein D; Lopolito P; Schwarz JS
    PDA J Pharm Sci Technol; 2016; 70(3):208-17. PubMed ID: 27091884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of killing of spores of Bacillus cereus and Bacillus megaterium by wet heat.
    Coleman WH; Zhang P; Li YQ; Setlow P
    Lett Appl Microbiol; 2010 May; 50(5):507-14. PubMed ID: 20302598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.