These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 34973572)

  • 1. Urban mining of terbium, europium, and yttrium from real fluorescent lamp waste using supercritical fluid extraction: Process development and mechanistic investigation.
    Zhang J; Anawati J; Azimi G
    Waste Manag; 2022 Feb; 139():168-178. PubMed ID: 34973572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rare-earth elements in the circular economy: The case of yttrium.
    Favot M; Massarutto A
    J Environ Manage; 2019 Jun; 240():504-510. PubMed ID: 30974293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rare earths separation from fluorescent lamp wastes using ionic liquids as extractant agents.
    Pavón S; Fortuny A; Coll MT; Sastre AM
    Waste Manag; 2018 Dec; 82():241-248. PubMed ID: 30509586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Process optimization for acidic leaching of rare earth elements (REE) from waste electrical and electronic equipment (WEEE).
    Yuksekdag A; Kose-Mutlu B; Zeytuncu-Gokoglu B; Kumral M; Wiesner MR; Koyuncu I
    Environ Sci Pollut Res Int; 2022 Jan; 29(5):7772-7781. PubMed ID: 34476712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioleaching of metals from WEEE shredding dust.
    Marra A; Cesaro A; Rene ER; Belgiorno V; Lens PNL
    J Environ Manage; 2018 Mar; 210():180-190. PubMed ID: 29353112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A hydrometallurgical process for the recovery of terbium from fluorescent lamps: Experimental design, optimization of acid leaching process and process analysis.
    Innocenzi V; Ippolito NM; De Michelis I; Medici F; Vegliò F
    J Environ Manage; 2016 Dec; 184(Pt 3):552-559. PubMed ID: 27789090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Screening and selection of technologically applicable microorganisms for recovery of rare earth elements from fluorescent powder.
    Hopfe S; Konsulke S; Barthen R; Lehmann F; Kutschke S; Pollmann K
    Waste Manag; 2018 Sep; 79():554-563. PubMed ID: 30343787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biohydrometallurgy for Rare Earth Elements Recovery from Industrial Wastes.
    Castro L; Blázquez ML; González F; Muñoz JÁ
    Molecules; 2021 Oct; 26(20):. PubMed ID: 34684778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon footprint assessment of recycling technologies for rare earth elements: A case study of recycling yttrium and europium from phosphor.
    Hu AH; Kuo CH; Huang LH; Su CC
    Waste Manag; 2017 Feb; 60():765-774. PubMed ID: 27810122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Penicillium expansum Link strain for a biometallurgical method to recover REEs from WEEE.
    Di Piazza S; Cecchi G; Cardinale AM; Carbone C; Mariotti MG; Giovine M; Zotti M
    Waste Manag; 2017 Feb; 60():596-600. PubMed ID: 27520390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recovery of rare earths from the green lamp phosphor LaPO
    Gijsemans L; Forte F; Onghena B; Binnemans K
    RSC Adv; 2018 Jul; 8(46):26349-26355. PubMed ID: 35541950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating Metal-Tributyl Phosphate Complexes during Supercritical Fluid Extraction of the NdFeB Magnet Using Density Functional Theory and X-ray Absorption Spectroscopy.
    Zhang J; Chen N; Morozova V; Voznyy O; Azimi G
    Inorg Chem; 2023 May; 62(20):7689-7702. PubMed ID: 37154778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recovery opportunities of valuable and critical elements from WEEE treatment residues by hydrometallurgical processes.
    Marra A; Cesaro A; Belgiorno V
    Environ Sci Pollut Res Int; 2019 Jul; 26(19):19897-19905. PubMed ID: 31090011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rare earth elements and yttrium as tracers of waste/rock-groundwater interactions.
    Cendón DI; Rowling B; Hughes CE; Payne TE; Hankin SI; Harrison JJ; Peterson MA; Stopic A; Wong H; Gadd P
    Sci Total Environ; 2022 Jul; 830():154706. PubMed ID: 35331767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and recovery of rare-earth permanent magnets from waste electrical and electronic equipment.
    Lixandru A; Venkatesan P; Jönsson C; Poenaru I; Hall B; Yang Y; Walton A; Güth K; Gauß R; Gutfleisch O
    Waste Manag; 2017 Oct; 68():482-489. PubMed ID: 28751173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Yttrium and europium separation by solvent extraction with undiluted thiocyanate ionic liquids.
    Banda R; Forte F; Onghena B; Binnemans K
    RSC Adv; 2019 Feb; 9(9):4876-4883. PubMed ID: 35514665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosorption of rare earth elements from luminophores by G. sulphuraria (Cyanidiophytina, Rhodophyta).
    Iovinella M; Palmieri M; Papa S; Auciello C; Ventura R; Lombardo F; Race M; Lubritto C; di Cicco MR; Davis SJ; Trifuoggi M; Marano A; Ciniglia C
    Environ Res; 2023 Dec; 239(Pt 1):117281. PubMed ID: 37827370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rare earth elements recycling from waste phosphor by dual hydrochloric acid dissolution.
    Liu H; Zhang S; Pan D; Tian J; Yang M; Wu M; Volinsky AA
    J Hazard Mater; 2014 May; 272():96-101. PubMed ID: 24681591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supply and demand of some critical metals and present status of their recycling in WEEE.
    Zhang S; Ding Y; Liu B; Chang CC
    Waste Manag; 2017 Jul; 65():113-127. PubMed ID: 28412098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leaching process for terbium recovery from linear tube fluorescent lamps: optimization by response surface methodology.
    Tahiri Alaoui Y; Semlali Aouragh Hassani N
    Environ Sci Pollut Res Int; 2020 Dec; 27(36):45527-45538. PubMed ID: 32797402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.