These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 34973803)

  • 1. Freeze-thaw and solvent-exchange strategy to generate physically cross-linked organogels and hydrogels of curdlan with tunable mechanical properties.
    Wu M; Chen X; Xu J; Zhang H
    Carbohydr Polym; 2022 Feb; 278():119003. PubMed ID: 34973803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of water distribution in xanthan-curdlan hydrogel complex using magnetic resonance imaging, nuclear magnetic resonance relaxometry, rheology, and scanning electron microscopy.
    Williams PD; Oztop MH; McCarthy MJ; McCarthy KL; Lo YM
    J Food Sci; 2011 Aug; 76(6):E472-8. PubMed ID: 22417499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of Xanthan-Curdlan Hydrogel Complex on Freeze-Thaw Stability and Rheological Properties of Whey Protein Isolate Gel over Multiple Freeze-Thaw Cycle.
    Shiroodi SG; Rasco BA; Lo YM
    J Food Sci; 2015 Jul; 80(7):E1498-505. PubMed ID: 26012512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High strength of hemicelluloses based hydrogels by freeze/thaw technique.
    Guan Y; Bian J; Peng F; Zhang XM; Sun RC
    Carbohydr Polym; 2014 Jan; 101():272-80. PubMed ID: 24299774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Network structure of curdlan in DMSO and mixture of DMSO and water.
    Tada T; Tamai N; Matsumoto T; Masuda T
    Biopolymers; 2001 Feb; 58(2):129-37. PubMed ID: 11093112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reinforced macromolecular micelle-crosslinked hyaluronate gels induced by water/DMSO binary solvent.
    Zhang H; Ren P; Wei H; Halila S; Osi AR; Zhou Y; Dai Z; Wang R; Chen J
    Soft Matter; 2020 Sep; 16(37):8647-8654. PubMed ID: 32856677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of pore formation in hydrogel scaffolds textured by freeze-drying.
    Grenier J; Duval H; Barou F; Lv P; David B; Letourneur D
    Acta Biomater; 2019 Aug; 94():195-203. PubMed ID: 31154055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water-induced physical gelation of organic solvents by N-(n-alkylcarbamoyl)-L-alanine amphiphiles.
    Pal A; Dey J
    Langmuir; 2011 Apr; 27(7):3401-8. PubMed ID: 21351761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Liquid-liquid equilibria of polyrotaxane and poly(vinyl alcohol).
    Kataoka T; Nagao Y; Kidowaki M; Araki J; Ito K
    Colloids Surf B Biointerfaces; 2007 Apr; 56(1-2):270-6. PubMed ID: 17196801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-adhesive, ionic-conductive, mechanically robust cellulose-based organogels with anti-freezing and rapid recovery properties for flexible sensors.
    Zhou Y; Li R; Wan L; Zhang F; Liu Z; Cao Y
    Int J Biol Macromol; 2023 Jun; 240():124171. PubMed ID: 36966862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A combined effect of freeze--thaw cycles and polymer concentration on the structure and mechanical properties of transparent PVA gels.
    Gupta S; Goswami S; Sinha A
    Biomed Mater; 2012 Feb; 7(1):015006. PubMed ID: 22287550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Injectable and photocross-linkable gels based on gellan gum methacrylate: a new tool for biomedical application.
    Pacelli S; Paolicelli P; Dreesen I; Kobayashi S; Vitalone A; Casadei MA
    Int J Biol Macromol; 2015 Jan; 72():1335-42. PubMed ID: 25450552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strength enhancement of nanostructured organogels through inclusion of phthalocyanine-containing complementary organogelator structures and in situ cross-linking by click chemistry.
    Díaz DD; Cid JJ; Vázquez P; Torres T
    Chemistry; 2008; 14(30):9261-73. PubMed ID: 18729114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of properties between NIPAAm-based simultaneously physically and chemically gelling polymer systems for use in vivo.
    Bearat HH; Lee BH; Vernon BL
    Acta Biomater; 2012 Oct; 8(10):3629-42. PubMed ID: 22705635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tuning chemical and physical cross-links in silk electrogels for morphological analysis and mechanical reinforcement.
    Lin Y; Xia X; Shang K; Elia R; Huang W; Cebe P; Leisk G; Omenetto F; Kaplan DL
    Biomacromolecules; 2013 Aug; 14(8):2629-35. PubMed ID: 23859710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembled zein organogels as in situ forming implant drug delivery system and 3D printing ink.
    Raza A; Hayat U; Zhang X; Wang JY
    Int J Pharm; 2022 Nov; 627():122206. PubMed ID: 36126824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel strategy for preparing mechanically robust ionically cross-linked alginate hydrogels.
    Jejurikar A; Lawrie G; Martin D; Grøndahl L
    Biomed Mater; 2011 Apr; 6(2):025010. PubMed ID: 21436510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New process to form a silk fibroin porous 3-D structure.
    Tamada Y
    Biomacromolecules; 2005; 6(6):3100-6. PubMed ID: 16283733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supermacroporous chemically cross-linked poly(aspartic acid) hydrogels.
    Gyarmati B; Mészár EZ; Kiss L; Deli MA; László K; Szilágyi A
    Acta Biomater; 2015 Aug; 22():32-8. PubMed ID: 25922304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell encapsulation within PVA-based hydrogels via freeze-thawing: a one-step scaffold formation and cell storage technique.
    Vrana NE; O'Grady A; Kay E; Cahill PA; McGuinness GB
    J Tissue Eng Regen Med; 2009 Oct; 3(7):567-72. PubMed ID: 19598204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.