These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 34973984)
41. Immobilization of Candida antarctica Lipase on Nanomaterials and Investigation of the Enzyme Activity and Enantioselectivity. Coşkun G; Çıplak Z; Yıldız N; Mehmetoğlu Ü Appl Biochem Biotechnol; 2021 Feb; 193(2):430-445. PubMed ID: 33025565 [TBL] [Abstract][Full Text] [Related]
42. Solid-phase handling of hydrophobins: immobilized hydrophobins as a new tool to study lipases. Palomo JM; Peñas MM; Fernández-Lorente G; Mateo C; Pisabarro AG; Fernández-Lafuente R; Ramírez L; Guisán JM Biomacromolecules; 2003; 4(2):204-10. PubMed ID: 12625713 [TBL] [Abstract][Full Text] [Related]
43. Immobilization of lipases in hydrophobic chitosan for selective hydrolysis of fish oil: The impact of support functionalization on lipase activity, selectivity and stability. Urrutia P; Arrieta R; Alvarez L; Cardenas C; Mesa M; Wilson L Int J Biol Macromol; 2018 Mar; 108():674-686. PubMed ID: 29246872 [TBL] [Abstract][Full Text] [Related]
44. A novel approach for bioconjugation of Rhizomucor miehei lipase (RML) onto amine-functionalized supports; Application for enantioselective resolution of rac-ibuprofen. Mohammadi M; Habibi Z; Gandomkar S; Yousefi M Int J Biol Macromol; 2018 Oct; 117():523-531. PubMed ID: 29857106 [TBL] [Abstract][Full Text] [Related]
45. Immobilized Candida antarctica lipase B: Hydration, stripping off and application in ring opening polyester synthesis. Idris A; Bukhari A Biotechnol Adv; 2012; 30(3):550-63. PubMed ID: 22041165 [TBL] [Abstract][Full Text] [Related]
46. Hydrolysis of fish oil by hyperactivated Rhizomucor miehei lipase immobilized by multipoint anion exchange. Filice M; Marciello M; Betancor L; Carrascosa AV; Guisan JM; Fernandez-Lorente G Biotechnol Prog; 2011 Jul; 27(4):961-8. PubMed ID: 21574268 [TBL] [Abstract][Full Text] [Related]
47. Glutaraldehyde modification of lipases immobilized on octyl agarose beads: Roles of the support enzyme loading and chemical amination of the enzyme on the final enzyme features. Abellanas-Perez P; Carballares D; Fernandez-Lafuente R; Rocha-Martin J Int J Biol Macromol; 2023 Sep; 248():125853. PubMed ID: 37460068 [TBL] [Abstract][Full Text] [Related]
48. Effect of the Presence of Surfactants and Immobilization Conditions on Catalysts' Properties of Rhizomucor miehei Lipase onto Chitosan. de Oliveira UMF; Lima de Matos LJB; de Souza MCM; Pinheiro BB; Dos Santos JCS; Gonçalves LRB Appl Biochem Biotechnol; 2018 Apr; 184(4):1263-1285. PubMed ID: 29019010 [TBL] [Abstract][Full Text] [Related]
50. Use of immobilized lipases for lipase purification via specific lipase-lipase interactions. Palomo JM; Ortiz C; Fuentes M; Fernandez-Lorente G; Guisan JM; Fernandez-Lafuente R J Chromatogr A; 2004 Jun; 1038(1-2):267-73. PubMed ID: 15233541 [TBL] [Abstract][Full Text] [Related]
51. Immobilization of Penicillin G Acylase on Vinyl Sulfone-Agarose: An Unexpected Effect of the Ionic Strength on the Performance of the Immobilization Process. da Rocha TN; Morellon-Sterlling R; Rocha-Martin J; Bolivar JM; Gonçalves LRB; Fernandez-Lafuente R Molecules; 2022 Nov; 27(21):. PubMed ID: 36364414 [TBL] [Abstract][Full Text] [Related]
52. Immobilization of CALB on lysine-modified magnetic nanoparticles: influence of the immobilization protocol. Nicolás P; Lassalle V; Ferreira ML Bioprocess Biosyst Eng; 2018 Feb; 41(2):171-184. PubMed ID: 29064034 [TBL] [Abstract][Full Text] [Related]
53. Stabilization of dimeric β-glucosidase from Aspergillus niger via glutaraldehyde immobilization under different conditions. Vazquez-Ortega PG; Alcaraz-Fructuoso MT; Rojas-Contreras JA; López-Miranda J; Fernandez-Lafuente R Enzyme Microb Technol; 2018 Mar; 110():38-45. PubMed ID: 29310854 [TBL] [Abstract][Full Text] [Related]
54. Ethyl Butyrate Synthesis Catalyzed by Lipases A and B from Monteiro RRC; Neto DMA; Fechine PBA; Lopes AAS; Gonçalves LRB; Dos Santos JCS; de Souza MCM; Fernandez-Lafuente R Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31752306 [TBL] [Abstract][Full Text] [Related]
55. Understanding Design Rules for Optimizing the Interface between Immobilized Enzymes and Random Copolymer Brushes. Sánchez-Morán H; Weltz JS; Schwartz DK; Kaar JL ACS Appl Mater Interfaces; 2021 Jun; 13(23):26694-26703. PubMed ID: 34081428 [TBL] [Abstract][Full Text] [Related]
56. Tuning Immobilized Enzyme Features by Combining Solid-Phase Physicochemical Modification and Mineralization. Guimarães JR; Carballares D; Rocha-Martin J; Tardioli PW; Fernandez-Lafuente R Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361599 [TBL] [Abstract][Full Text] [Related]
57. Effects of Triton X-100 and PEG on the Catalytic Properties and Thermal Stability of Lipase from Perna RF; Tiosso PC; Sgobi LM; Vieira AMS; Vieira MF; Tardioli PW; Soares CMF; Zanin GM Open Biochem J; 2017; 11():66-76. PubMed ID: 29290831 [TBL] [Abstract][Full Text] [Related]
58. Plasma Functionalized Multiwalled Carbon Nanotubes for Immobilization of Candida antarctica Lipase B: Production of Biodiesel from Methanolysis of Rapeseed Oil. Rastian Z; Khodadadi AA; Guo Z; Vahabzadeh F; Mortazavi Y Appl Biochem Biotechnol; 2016 Mar; 178(5):974-89. PubMed ID: 26588921 [TBL] [Abstract][Full Text] [Related]
59. Activity and stability of chemically modified Candida antarctica lipase B adsorbed on solid supports. Koops BC; Papadimou E; Verheij HM; Slotboom AJ; Egmond MR Appl Microbiol Biotechnol; 1999 Nov; 52(6):791-6. PubMed ID: 10616713 [TBL] [Abstract][Full Text] [Related]
60. Immobilization of Candida antarctica lipase B onto SBA-15 and their application in glycerolysis for diacylglycerols synthesis. Cai C; Gao Y; Liu Y; Zhong N; Liu N Food Chem; 2016 Dec; 212():205-12. PubMed ID: 27374525 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]